
Page 1 of 121

Detection of Parkinson’s
by virtue of Neural nets using mouse data

Summary
For my investigation I am looking to detect symptoms of Parkinson’s from mouse data. Parkinson’s is a

neurodegenerative disease in which people lose mobility and begin to experience tremors, spasms I their

muscles that they cannot control. I hope to investigate whether these tremors can be detected from

vibrations in mouse movement during day to day use on a computer by running a program in the

background of PC’s belonging to those with the condition.

I intend to collect data by recording mouse movement and sending it to a central server for analysis and

storage in a database. I intend to contact people with the condition in my local area/ a Parkinson’s society to

be granted permission to install my software on their computers. From there I hope to train an AI to

recognise tremors caused by Parkinson’s the data set collected containing, people with the condition, and

general mouse data sourced from running my program in college or using data sets online.

This subject particularly interested me due to its real-world applications and for giving me the opportunity

and motivation to delve deeper into the realm of machine learning, networking and development in for the

windows environment. I am intrigued as to which form of ML will be best suitable for my scenario and the

implications involved in implementing the most efficient solution, in terms of optimisation and mathematical

challenge. Additionally, I have never incorporated networking into a solution, it will be interesting to see the

options available to me with my chosen language C++.

Page 2 of 121

Contents
Summary ... 1

Initial research .. 6

Parkinson’s .. 6

Symptoms / detection ... 6

Scope of the Problem .. 7

The issues with detecting Parkinson’s .. 7

Classification ... 7

Statistics .. 7

Interview with 3rd party .. 9

Interview Summary ... 10

Level 0 data flow diagram ... 11

Data Analysis ... 12

Different types of Machine learning ... 12

Supervised: .. 12

Unsupervised: ... 12

Reinforcement: ... 12

Semi-Supervised: ... 12

Conclusion: .. 12

Different types of Supervised Machine learning .. 13

Decision Trees (Classification type) .. 13

Linear regression ... 13

Support vector machines .. 14

Neural networks .. 14

Conclusion ... 15

Further analysis of chosen algorithm (RNN) ... 16

Computational graphs ... 16

More detail on perceptron’s ... 16

N class classification .. 17

Activation Functions.. 17

Notation .. 18

What is the Loss function? .. 18

Training through gradient decent ... 19

Backpropagation ... 19

The maths: .. 20

How an RNN differs ... 22

Finite Impulse vs Infinite impulse ... 23

Explanation of matrix multiplication ... 23

Page 3 of 121

GPU Acceleration using OpenCL ... 24

DFD for RNN: ... 25

Data collection .. 26

Mice... 26

Microsoft – Win 32 C++ Mouse movement capture... 26

Reading Operation .. 27

Internet Data Transfer handling ... 28

How is Data transferred? .. 28

WAN data transfer .. 28

WinSock... 28

One Drive .. 28

AWS ... 28

Handling shutdowns ... 29

Conclusion ... 29

The Fourier transforms ... 30

Solution Summary ... 32

Level 1 Data Flow Diagram .. 32

Modelled expected output .. Error! Bookmark not defined.

Solution requirements .. 34

Requirements blurb .. 35

Design .. 37

Mouse Data ... 38

Train Model ... 38

Live analysis ... 38

Mouse data Collection .. 39

Interface .. 39

Data collection .. 42

Mouse Data collection full flow chart ... 44

Exporting to CSV for viewing in excel.. 46

Neural Network Training ... 47

Representation .. 47

Formatting data .. 47

Fourier Transform ... 51

Simulating Parkinsons ... 53

Neural net ... 55

Determining network size ... 55

Importing the model ... 60

Network Training .. 61

Main Procedure... 65

Page 4 of 121

Class diagram for network .. 66

Data dictionary up to training phase .. 67

Log retrieval .. 67

Live detection .. 68

Tests .. 71

Black box tests .. 71

Mouse Client ... 71

Training ... 73

Live detection .. 74

White box tests ... 75

Mouse Client ... 75

Training ... 75

Live detection .. 75

investigating result ... Error! Bookmark not defined.

Hardware requirements / software requirements .. Error! Bookmark not defined.

Technical solution ... 76

Overview ... 76

A more detailed look ... 76

Mouse client.. 77

Normal operation .. 77

Mouse client class ... 78

Sample logging .. 78

Binary to CSV ... 78

Configuration manager ... 79

FTP Upload executable.. 79

Training ... 80

Data Preparation ... 80

Matrix Library .. 82

Class .. 82

Main functions .. 83

GPU acceleration ... 86

GPU Matrix maths ... 89

Machine learning .. 92

CPU Network ... 92

GPU network ... 98

Log importing .. 100

Adding classes ... 100

Simulating parkinsonian behaviour .. 100

Formatting... 101

Page 5 of 121

Random number generation ... 101

Normalisation .. 101

Sampling interval .. 101

Fill gaps .. 102

Get samples ... 102

Add sign ... 102

Add cog wheel ... 102

Prepare live data ... 102

Live detection .. 103

Plotter ... 103

Screenshots ... 104

Testing ... 105

Black box tests .. 106

Mouse Client ... 106

Training ... 107

Live detection .. 108

White box tests ... 109

Mouse Client ... 109

Training ... 109

Live detection .. 109

Evaluation ... 110

Interview ... 110

Evaluation of interview ... 110

Analysis of requirements .. 111

Bibliography .. 119

Page 6 of 121

Initial research
Parkinson’s

Parkinson’s disease, denoted PD from here on, is a currently untreatable degenerative disease that affect

the central nervous system, that mainly affects the motor neurone system, the nervous system responsible

for controlling movement. The symptoms develop slowly with shacking, rigidity and slowness of movement

and later thinking and behavioural issues develop. Dementia, depression and anxiety are common with one

third with PD having such issues. The main motor symptoms are denoted “parkinsonism”. The stimulus for

the disease is unknown, but are believed to be contributed by genetics and environmental factors.

Parkinsonism generally has no identifiable cause with intense periods occurring randomly in the subject’s

life. The most common occurring sign is a harsh slow tremor in either hand at rest which disappears during

voluntary movement of the hands or arm and in the deeper stages of sleep. It typically appears in only one

hand, eventually affecting both hands as the disease progresses. Parkinson’s differs from other

neurodegenerative diseases as it also causes an abnormal accumulation of alpha-synuclein protein in the

brain unlike Alzheimer’s where tau protein accumulates. “Considerable clinical and pathological overlap

exists between tauopathies and synucleinopathies” in laymen’s terms this means that it will be very difficult

for me to distinguish between Alzheimer’s and PD since their symptoms are very similar although the

sampled data can be filtered to contain only parkinsonian mouse movement which may allow the chosen

algorithm to recognise and ignore Alzheimer’s, as an extension I could allow the algorithm to recognise

Alzheimer’s although that would require me to collect a 3rd data set and be out of scope of my investigation.

Memory loss is also a key component of PD and becomes very prevalent in the later stages of the disease, I

will have to take this into consideration when developing the project such that the user doesn’t have to

remember any details required for the collection to be successful; I believe that this should extend to the so

Handwriting of a person affected by PD

Summary

Symptoms are most obvious when the hands are stationary although, early symptoms occur only in one

hand, and could therefore be easily missed until the condition worsens.

Symptoms / detection
Neurodegenerative diseases progress slowly with subtle symptoms at first but early diagnosis can slow their

progression. PD causes tremors that are Unilateral and typically occur between 4 and 6 Hz any Hand Tremors

are supination–pronation (“pill-rolling”) tremors that spread from one hand to the other. PD causes rigidity

in the subjects’ limbs and tremors result in a cog-wheel motion. It can also induce voluntary finger tapping

which I could detect in mouse data, since I have no way of deducing whether the movement was voluntary

or not I don’t believe it necessary to record mouse clicks too especially since I must minimise the data

collected and transferred. Another symptom is slowness in making voluntary movements, this could be

shown in the modelled data by smoothing the source data initially then applying the 4-6Hz sine wave. Due to

the constant tremors causing increased muscle tone to the rapid contractions in the patients arms would

lead to sharper peaks in the mouse movement with the involuntary movements being severe, this would

again lead to noise in the data but knowing this I will scale the noise more such that it affects the data more

severely. It has also been found that PD is often correlated with smaller handwriting, this could lead to

generally smaller mouse movement with the sharp peaks in between.

Previous studies found it difficult to distinguish between PD and essential tremor (another nervous disorder

causing similar tremors), but were able to use a multitude of machine learning classification models which

were trained on two distinct groups to successfully classify a new sample with 96% accuracy far better than

the 75-80% accuracy of clinical diagnosis. A later study found that when recording the tremors with an

https://en.wikipedia.org/wiki/File:Writing_by_a_Parkinson's_disease_patient.png

Page 7 of 121

accelerometer, an FFT could be applied to the data (Fast Fourier transform – converting amplitude time

signals to the amplitude frequency domain) making it was easy to distinguish traces of PD in a subject due to

clear differences in the frequency of oscillations in the subjects’ hands.
(Ryen W. White, 2018)

(Jankovic, March 14, 2008.)

(Adams, November 30, 2017)

Summary

Two groups of mouse data should be collected, that of PD sufferers and non-PD sufferers. An FFT should be

applied to the data, spikes at a frequency between 4-6hz should be visible. Classification model should be

applied with a target accuracy greater than 75%.

If a model is to be used: since healthy mouse data will be easy to collect I will first smooth a collection of

healthy data to represent the slowness of movement then will apply an artificial 4-6Hz sine wave with noise.

Scope of the Problem
There are many elements of the project which require research the first of which is the feasibility of how to

recognise PD from data, and the best machine learning algorithm to do so. Next is the ability to collect

mouse data from windows machines and whether this data will be detailed enough to draw sensible

conclusions as well as collecting time stamps for the mouse data. Finally, I must research how the PD mouse

data will be sent to me for storage and how I will be formatting and storing the data.

The issues with detecting Parkinson’s
The key issues that arise when diagnosing PS are that the symptoms progress linearly over time this makes

initial diagnosis very difficult as the symptoms are very minor, due to this, doctors test numerous factors

that suggest PD but no one test can diagnose the disease. A combination of your medical history, since PD is

often hereditary, a specific single-photon emission computerized tomography SPECT scan called a dopamine

transporter (DAT) scan can be used to support the fact that you may have the disease but cannot prove it.

Imaging techniques such as MRI scans can also be used but moto symptoms are most prevalent.

Classification
I will be classing PD as the following:

• Tremor at 4-6Hz

o This will take shape as a circular motion with a period of 0.166 to 0.25 seconds

• Generally slow movement

o This will take shape as smoother movement towards a target with mean velocity being less

than normal mouse data

• Random Spikes of quick movement

o These will appear as spikes in movement occurring randomly with varying severity

• Generally small mouse gestures

o Would be shown by mouse movement being restricted to smaller areas within the screen, ie

the range of the co-ordinates will be less than average

Statistics
It is estimated that nearly one million people will be diagnosed with Parkinson’s disease in 2020 in the

United States alone, since the current population prediction for the United States in 2020 stands at 389

million it follows that 0.257% of people in the united states will be diagnosed by the year 2020, affecting the

lives of many more, up to 10 million people worldwide are thought to be living with the disease WITH ONLY

6.1 million cases bing known. Every year approximately 60,000 people are diagnosed additionally, 15% of

Page 8 of 121

people are misdiagnosed with Parkinson’s, failing to meet the strict clinical criteria for the disease and then

20% of people with Parkinson’s evaluated were not diagnosed despite meeting the aforementioned criteria.

I have concluded these results below:

Gender Distribution

Men are 1.5 times more likely than woman to contract the disease but it is not

known why, although it is currently thought be a combination of the protective

effect of oestrogen, the increased rate of minor head trauma in men, as well as

the, on average, increased intake of toxins by males, finally the increased genetic

susceptibility of male chromosomes.

Age Distribution

As people age their susceptibility to developing the disease drastically increases, for those in their 40’s just

67 people out of 471,034 contract the disease, that’s just 0.014%. By the time you’re 80, 2318 in 138874

people contract it, that’s a rise to 1.7%! The full breakdown is as follows: 20-29: 0.002%, 30-39: 0.005%, 40-

49: 0.014%, 50-59: 0.194%, 60-69: 0.736%, 70-79: 2.145%, 80-89: 3.323%, 95: 2.857%.

United States

Other Misdiagnosed Undiagnosed Known

Global

Population Misdiagnosed Undiagnosed Known

Genders

Male Female

Page 9 of 121

As you can see, once people with the condition pass 85 years of age the percentage with Parkinson’s begins

to decline, this is due to the high fatality rate of people with the disease in later stages.

Age Distribution in each gender

As you can see the graph demonstrates the increased susceptibility of males vs females.

(Parkinson's UK, 2017)

Interview with 3rd party
Initial discussion:

Johnathon: So, your trying to distinguish between parkinsonian like tremor compared to known non-

parkinsonian tremor in students, what do you think will be the most difficult aspect of your project?

Me: I believe it will be a sufficiently accurate training a model to distinguish between the two models, as that

incurs a lot of complicated maths and statistics within computing.

Johnathon: A problem I thought of was the difficulty in obtaining the Parkinson like data how do you aim to

tackle that issue?

Me: I have proposed my project to the Parkinson’s society who haven’t responded, I have also researched

the local area and had very little response. I believe the best method of collecting parkinsonian like data will

be to create a model of parkinsonian data, incorporating a 4-6hz sine wave as that was shown in previous

research to be a key component of the tremor.

Yes, I agree that you need a model given the difficulty of finding people with Parkinson’s because I doubt the

Parkinson’s society will really respond since there is nothing in it for them, especially given that Parkinson’s

0.0000%

0.2000%

0.4000%

0.6000%

0.8000%

1.0000%

1.2000%

1.4000%

1.6000%

1.8000%

2.0000%

20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

P
er

ce
n

ta
ge

Age

%People With Parkinsons - UK

0.0000%

0.5000%

1.0000%

1.5000%

2.0000%

2.5000%

50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00

P
er

ce
n

ta
ge

Age

%People With Parkinsons - UK - Males/Females

Female

Male

Page 10 of 121

is a very well recognised disease with much research conducted previously over the years. The other issue is

that people who have the disease under medication will have diminished tremors and will be very difficult

perhaps to correlate tremor against drug dosage.

1. Do you think It will be possible to recognise Parkinsonian behaviour with machine learning, if so are there

any implications in doing so, that come to mind?

a. I definitely think you will be able to do your machine learning to distinguish between the normal

non-tremor state the simulated tremor state. Quite how that will genuinely relate to Parkinson’s

itself might be more difficult and would need cooperation from Parkinson patients and compare the

two data sets.

2. Are there any data protection issues I should be weary of?

a. I think that’s the main reason why the Parkinson’s society would be reluctant to comply as they will

be unlikely to go ahead with that for all sorts of data protection act issues.

3. How applicable do you think my investigation is to the real world?

a. I honestly don’t know as I think that, other than the machine learning component which I know you

will do, if you take the comparison of the parkinsonian like tremor against real Parkinson’s tremor

would be a study in itself and therefore be out of scope of your study. Therefore, I think that you

should not refer to it as detecting Parkinson’s disease, you should always refer to it as detecting your

normal mouse movement compared to your modelled parkinsonian moments with a 4-6hz sine

wave applied.

4. What symptoms do you think will be the most obvious?

a. I think there is a whole symptomology in Parkinson’s such as the tremor and even gait. But I think all

you can do is to try and calibrate your model, if you were lucky enough for someone with the

disease to collaborate also while not under medication, without which you can only detect

Parkinson’s like tremor

5. Do you believe my solution could be used for clinical diagnosis? If so would there be any issues in doing so?

a. Its certainly out of the current scope of the current project but if data sets where very clear it would

be more feasible to contact the Parkinson’s society once that data had been obtained.

6. Do you believe there is any merit in using alternative methods of detection such as eye tracking /

neurological detection?

a. I would have thought that university groups would be certainly looking in these areas

7. Is it a good idea to display results should there be an optional consultancy?

a. If you get a clear-cut result that is proven to distinguish between the data sets, I think it would be

very interesting to pass on the results to a clinical environment

8. Do you think environmental factors such as medication and diets could affect the results? If so how could I

take precautions against them?

a. You could in your control group experience tremors from other sources such as alcohol.

Consequently, you must have a very large data set to reduce the affect of these anomalies. Equally in

normal healthy use its plausible that people show similar tremors or could have the symptoms of

other tremor inducing diseases.

Interview Summary
It is very important to develop as accurate of a model as possible possibly including a 4-6hz sine wave to

represent parkinsonian behaviour and consequently must be referred to as parkinsonian like data. This is

due to the fact that Parkinson societies are unlikely to corroborate with me due to DPA issues and the fact

that people will not want to share their mouse data. It would be interesting to pass on the collected data for

future research. There will probably be signs of parkinsonian behaviour in the healthy data.

Page 11 of 121

Level 0 data flow diagram

Arrow
ID

Name Description

1 Compilation Mouse inputs written to a file with time stamps which to
then be sent to me

2 Decoding
and pre-
processing

Data normalised and passed to Machine learning
algorithm

3 Results Results collected from machine learning algorithm and
sent to output store

Page 12 of 121

Data Analysis
I first must establish which machine learning technique I will be using to analyse the data I will be collecting;

for this I found some useful sites, I have summarised key points from each.

Different types of Machine learning

Supervised:
A large set of training data is used to create “logic” that can be applied to similar data. “Fast and accurate”.

Used to “model relationships and dependencies between the target prediction output and the input

features”

Nearest Neighbour

● Naive Bayes

● Decision Trees

● Linear Regression

● Support Vector Machines (SVM)

● Neural Networks

Unsupervised:
A larger set of unlabelled training data, forcing the algorithm to learn patterns and relationships within the

data on its own, clustering the outcomes.

Reinforcement:
Trial and error approach to solving the issue, eg genetic algorithms, making the algorithm change and run

again discarding negative traits

Semi-Supervised:
Only some of the data used is labelled the un-labelled data is then grouped according to the labelled data,

combining the learning technique from unsupervised and supervised learning

Conclusion:
From my research I believe it is clear that supervised learning is the most method of machine learning in

investigation since labelled data collection is easy; furthermore, the data can only be categorised into my

labelled types (Parkinsonial and non-Parkinsonial, both are mutually exclusive and combined are exhaustive).

(Sanjeevi, 26 September 2017)

(Fumo, 2017)

https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2

Page 13 of 121

Different types of Supervised Machine learning

Naïve bays

Probabilities of each outcome calculated by assuming they are independent, that’s all that is done to train

the AI, data should be Gaussian or near-Gaussian (fits a bell curve).

(Brownlee, 2016)

Eg there are 20 red, 40 green, in the vicinity of the new (white) cell

there are 3 red, 1 green.

P(X) | Green = 1 / 40 = 0.025

P(X) | RED = 3/20 = 0.15

⇨ Most likely red

(Dernoncourt, 2016)

Decision Trees (Classification type)
Probabilities of each outcome calculated at each condition test of the data,

the more conditions the item is tested for, the more accurate the result. The

calculation of the conditions (splitting of the tree) is how the algorithm is

trained. An example of which is recursive binary splitting where all possible

conditions are tested and the ones with the lowest cost are chosen (I think this

will take too long given my data inputs). The root is always the biggest factor

in the decision.

(Gupta, 2017)

Linear regression
Linear relationship between input(s) and output, (applicable to Parkinson’s as it linearly gets worse). It works

by applying a linear equation to each input variable, with a coefficient and a constant; the model is trained

by estimating the coefficients and improving on them over time. The two common techniques are “Least

squares” and “Gradient Decent”.

Least Squares

Draws a line of regression through the data and attempts to minimise the distance of all the data points to

the line of regression by summing the square of all the distances to the line of regression. Mean Squared

Error (MSE).

Gradient decent

Start with randomised values for each coefficient and iteratively minimising the error of each coefficient by

increasing or decreasing it to reduce the error between the output and the labelled result, the iteration is

continued until there is no improvement or a target is met. This

method is susceptible to non-convex data as there could be multiple

minima for each co-efficient.

After both techniques each small coefficient is reduced to zero

provided it does not affect the output by a given amount, improving the efficiency of the model.

(Brownlee, 2016)

(Gandhi, 2018)

Page 14 of 121

Support vector machines
One of the most popular machine learning algorithms. Allowing an n-dimensional input (applicable to my

project as there will be as many mouse properties recorded as possible.

Maximal Margin Classifier

Taking a set of n-dimension points and drawing a plane that best separates them, called a “hyperplane”, the

equation for the hyperplane is calculated by maximising the margin, the distance from the hyperplane to the

nearest points, thus maximising the accuracy of separation of each class (although only working for binary

classes).

Soft Margin Classifier

Since most n-dimensional data cannot be perfectly separated a C parameter is introduced which allows for

an amount of error, allowing points to cross the hyperplane up to an extent while training the model. The

greater C the less sensitive the model is to the training data.

This technique is developed further with the use of kernels representing the dot product between new data

points and the hyperline, the model is then trained using stochastic gradient decent for efficiency.

The previous two methods do not seem applicable to my scenario as the co-ordinate data will not be split

due to Parkinsonial behaviour as although it’s a binary classification the developmental stages of the disease

are not binary.

(Brownlee, 2016)

Neural networks

Feedforward Neural Network

Data travels in one direction through each perceptron, where weights are applied to the input, if the output

is >=0 the neurone will fire feeding into the next layer of neurons. Each neurone is trained using the delta

rule, a form of gradient decent. These are applicable to noisy data and are easy to maintain. With multiple

layers can approximate with arbitrary accuracy any periodic function.

(Wikapedia, 2018)

Radial basis function Neural Network

A two-layer neural network that uses a radial method of analysis, viewing the inputs as points on a circle in

relation to its centre. The radius of the point to the centre can then be used to predict that the next point

will probably have a similar radius. However, this method is often used to analyse risk of successive events

such as failures in a power grid, consequently I don’t believe its applicable to my scenario.

Kohonen Self Organizing Neural Network

Maps a n-dimensional data space to a one or two-dimensional map comprised of many neurones. To train,

each data point is iteratively selected and the closest neurone to it is chosen, it is then moved closer to the

data point and the connected neurones are also moved closer according to the Euclidian distance. This

method of training and operation is typically used to analyse images for a given trait.

Recurrent Neural Network

Much the same as a multi-layer feedforward neural network although each neurone will be fed some

information from the previous layer of neurones. At each stage the prediction of that layer is calculated and

compared to the correct output. The previous layer can then be adjusted as to get as close to the correct

prediction as possible, thus reducing the error, this is called backwards propagation and is repeated until the

network converges to a predefined target error state. I believe this “long short-term memory” will aid the

accuracy of the neural network in my scenario as well as the ability to input an arbitrarily long sequence of

data. Furthermore, according to the paper linked below, this type of neural network is capable of recognising

handwriting, and therefore I believe is fitting for my scenario.
(Alex Graves, 2008)

(Wikipedia, 2018)

Page 15 of 121

Convolutional Neural Network

Similar to multi-layer feedforward network although the data is inputted in batches. Inspired by animal

visual cortexes such that each neurone is not connected to every neurone in the previous layer vastly

decreasing the number of required weights, this would be useful in my application since I intend to collect

large swaths of data and therefore having an optimal analysis technique would be preferable but CNN’s are

usually only optimal for image processing. Additionally, according to the stack exchange, it can only have

fixed length inputs.

Standard 3-layer neural network Convolutional Neural network in 3 Dimensions

(Wikapedia, 2018)

(Freeman, 2016)

(Maladkar, 2018)

Conclusion
From my research I believe it will be best to use a Recurrent Neural Network, since their inputs can have

arbitrary length such that no data will be discarded and they have a long-short-term memory so the previous

results can impact the proceeding results. However, this method will increase the processing required to

train the network and require more processing to run the analysis, although I believe it is worth the excess

processing time to produce a more usable output.

Page 16 of 121

Further analysis of Neural networks

Computational graphs
Computational graphs are a form of directed graph where variables can feed their value into

an operation and the operation feed their output into further operations. Here the

computational graph computes the sum of two input variables where z(x,y) = x + y

As the computations grow more complex this notation becomes more useful. A compute

graph must contain the following components: a compute function which carries out the

operation, a list of input nodes and a list of “consumers” which consume the outputs of

previous operations. The values fed into the nodes and the output nodes are known as tensors.

 http://www.deepideas.net/deep-learning-from-scratch-i-computational-graphs/

More detail on perceptron’s
Perceptron’s are the constituents of neural networks and consist of weights and biases. These weights can

be applied to n-dimensional data to transform them according to some function for example if two data sets

when plotted could be differentiated by dividing the data with the line y = x. It could be said that to classify

an item of data one could apply the formula:

𝑤𝑇𝑥 + 𝑏 = 0

Where w is the weight vector which is then applied to the data points represented by x with the bias b

applied, the bias will never change after the random initialization and determines if a neurone will usually

fire. In this case where the classification is occurring in the line y = x thus the weight w will be (1,1) and the

bias 0. Once the weight and bias is applied the data above the line y = x will give positive values while the

data below will give negative values.

A perceptron or in other words a classifier can be represented with the notation 𝑐̂ ∶ ℝ𝑑 → {1, 2, … , 𝐶}

Where C represents the number of classes. If the weights are 𝑤 ∈ ℝ𝑑 and bias 𝑏 ∈ ℝ𝑑 the perceptron will

be:

𝑐̂(𝑥) = {
1, 𝑖𝑓 𝑤𝑇𝑥 + 𝑛 ≥ 0

2, 𝑖𝑓 𝑤𝑇𝑥 + 𝑏 < 0

The resulting value of 𝑤𝑇𝑥 + 𝑏 can be arbitrarily high, the higher it is the more likely it is that that point

belongs to the corresponding class. In order to convert these values to a probability they must be mapped

from ±∞ to ± 1 this can be achieved with a sigmoid function such as tanh. It

takes any real input and maps it to the required range as shown in the graph.

The function tanh is written 𝑦 =
1− 𝑒𝑥

1+ 𝑒𝑥

Alternatively, you can restrict the range of the function to 0 to 1 with the following alteration:

𝑦 =
1

1 + 𝑒−𝑥

http://www.deepideas.net/deep-learning-from-scratch-i-computational-graphs/

Page 17 of 121

N class classification
To classify the data into n classes, multiple operations can be computed on the same vector in parallel, this

then introduces a new set of weights and biases which can be applied with the following matrix (for c

number of classes)

𝒐𝒖𝒕𝒑𝒖𝒕 = {

𝝈(𝒘𝑻1𝒙 + 𝒃1)

𝝈(𝒘𝑻2𝒙 + 𝒃2)
…

𝝈(𝒘𝑻𝑪𝒙 + 𝒃𝑪)

Where sigma represents the sigmoid function.

The issue with this is that there are c number outputs to the matrix operation all of range -1 to 1 or 0 to 1

depending on the sigmoid function used. In order for the output to be sent into the next layer of the neural

net it must again be normalised, but this time such that the sum of the probabilities is equal to 1. This

normalisation can be achieved with the element wise summation shown: 𝜎(𝑎)𝑖 =
𝑒𝑎𝑖

∑ 𝑒𝑎𝑖𝑐
𝑖=1

Activation Functions
Activation functions are functions applied to the output of each node in a network to transform their

outputs, either to change their range or linearity.

There are two main activation functions used in neural networks mentioned above, both are sigmoid, s

shaped curves:

𝑦 =
1− 𝑒−𝑥

1+ 𝑒−𝑥 𝑦 =
1

1+ 𝑒−𝑥

They are applied to the output of each node and are used to restrict the domain of each nodes output to a

predefined range. Some networks use infinite range functions but these are not as useful in classification

programs. The non-linearity of these function is key to their usefulness as the map the vast majority of

inputs close to -1 and 1 with respect to the function on the left otherwise known as tanh and 0 to 1 on the

right. They also allow for “layer stacking” non-binary outputs unlike some functions which map all values to 0

or 1 corresponding to x values greater than and less than 0.

However, this analogue nature is costly as it makes the network difficult to prune (the removal of

unnecessary nodes) as nodes cannot be removed as they almost never output the same value after a

sigmoid has been applied. This has brought rise to the ReLu function:

𝑦 = max (0, 𝑥)

This has the advantage of the same output for half of the inputs making the

pruning of nodes very easy- simply if the weight is negative. It also has a

simple differential but is bounded 0 to infinity blowing up the activation.

However due to the functions linear nature it isn’t as well suited to

classification. But due to it simple nature makes training larger networks

using the ReLu activation function much quicker.

A large convenience of these function is the simplicity of their differential which is used in backpropagation

to find the gradient of the weights and biases with respect to a desired output mentioned later. Each

differential is as follows:
𝑑

𝑑𝑥
tanh(x) =

2𝑒𝑥

(𝑒𝑥+1)2
𝑑

𝑑𝑥

1

1+𝑒−𝑥 =
𝑒−𝑥

(𝑒−𝑥+1)2

Page 18 of 121

Notation

Each layer of the network has neurons with weights denoted 𝑤 and biases 𝑏 in each layer can thus be

denoted 𝑤𝑖 𝑎𝑛𝑑 𝑏𝑖 if there are 𝑙𝑘 layers, thus each weight and bias could be referred to with 𝑤𝑖
𝑘 and 𝑏𝑖

𝑘 for

the weights and biases at the 𝑖𝑡ℎ node in the 𝑘𝑡ℎ layer.

The generalised form of the output of theses nodes could be represented as:

𝑎𝑖
𝑘 = 𝜎(𝑤𝑖

𝑘 ∗ 𝑎𝑘−1 + 𝑏𝑖
𝑘)

Here you can see the function is defined recursively using the 𝑎𝑘−1 this is using the notation:

𝑎𝑘 = ∑ 𝑎𝑖
𝑘

𝑛

𝑖=1

This represents that 𝑎𝑘 is equal to the sum of all the elements in that layer.

This can be extended to a matrix calculation for each layer like so:

𝜎 ([
𝑤0,0

𝑙 𝑤0,1
𝑙 𝑤0,𝑘

𝑤1,0 𝑤1,1 𝑤1,𝑘

𝑤𝑗,0 𝑤𝑗,1 𝑤𝑗,𝑘

] [

𝑎0
𝑙−1

𝑎1
𝑙−1

𝑎𝑗
𝑙−1

] + [

𝑏0

𝑏1

𝑏𝑗

])jk * j1 = j1

Here the weights of all the neurons can be shown with the 𝑘𝑡ℎ node in a layer connecting to all 𝑛 nodes in

the next layer, and then the bias is applied to the sum each node in the next layer

Going back to 𝑎𝑖
𝑘 = 𝜎(𝑤𝑖

𝑘 ∗ 𝑎𝑘−1 + 𝑏𝑖
𝑘)

You can see that the output of any node is equal to the sum of all the outputs from the previous layer

multiplied by the neurone’s weight and summed with the neurone’s bias. The result is passed to the

activation function represented with 𝜎.

What is the Loss function?
The loss function is the penalty calculated for incorrect classification, hence the class of the training data

must be known beforehand. The higher the output of the function the greater the error in classification.

There are two basic loss functions, mean squared, root mean squared and Euclidean distance there are

respectively as follows:

MS:
∑ (𝑦𝑡−𝑦)2𝑛

1

𝑛
 RMS: √

∑ (𝑦𝑡−𝑦)2𝑛
1

𝑛
 EC:

1

2𝑛
√∑ (𝑦𝑡 − 𝑦)2𝑛

1

𝑦𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 𝑦 𝑖𝑠 𝑙𝑎𝑏𝑒𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

The RMS loss function can also be normalised to account for different scales if the samples are sourced from

multiple data sets, this is applicable most of the users will have different mice and mouse drivers. Euclidean

distance is halved to make the differential easier to handle.

𝑁𝑅𝑀𝑆 =
𝑅𝑀𝑆

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

Page 19 of 121

Training through gradient decent
Once the structure of the network has been established the weights and bias can be trained such that all of

the elements are correctly classified this is achieved through “gradient decent”, where an initial random

value for the weights and bias are chosen, they are then iteratively increased or decreased in which ever

direction promises the highest correct classification from the training set. If the direction shows promise the

interval of weight and bias change is increased until a maximum percentage of chosen classes are correct. If

the adjustment overshoots the direction is reversed and interval decreased.

The issue with this method is that it often converges to a

local minimum, this would be the point highlighted in

the picture on the left, a dip in the graph while there are

much lower more optimal possible set of weights and

biases possible.

The gradient of the network with respect to network accuracy can be calculated through backpropagation,

named this as the error of the value outputted by the network is distributed back through the layers of the

network. This however requires the derivative of the “loss function”.

Backpropagation
Backpropagation is the process of calculating the necessary changes to be made to each weight and bias

throughout the network in order to give the desired change of the output. This is achieved by propagating

the final error back through the network. This final error is given by the imaginatively named error function

described earlier.

Because the network must move in the direction of reduced error the negative derivative of the error

function is taken. This will give a delta in the output which the weights in the network must change in order

to accommodate, the change in the weights should be proportional to this delta to ensure that when the

error nears 0 the error is not overshot.

For example if the current output of the network is -0.5 but the desired output is 0.75 the derivative of the

error function will be
𝑑

𝑑𝑥

1

2
(𝑦𝑡 − 𝑦)2 = yt − 𝑦 yt − 𝑦 = −0.5 − 0.75 = −1.25

If we then take the negative of this: 1.25 and propagate this change back through the network

Backpropagation uses the chain rule which states that
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
∗

𝑑𝑡

𝑑𝑥

From this we can extrapolate that the product of the gradient of all preceding layers will be equal to the

gradient of the loss function (the output of the network)

The differential of the mean squared distance loss function for a single sample is shown again below:
𝑑

𝑑𝑥

1

2
(𝑦𝑡 − 𝑦)2 = yt − 𝑦

Each weight can be changed throughout the network to decrease the error function, this means moving in

the direction of decreasing gradient, therefore the negative of the differential of the loss function is used

and each weight is changed proportionally to this negative differential. The weights are also changed

proportionally to the sum of its inputs as this represents the significance of that neuron in the network.

The following equation is formed when you propagate these desired changes in the network backwards,

hence the name backpropagation:

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1 σ′(𝑧𝑗
𝑙)

𝜕𝐶

𝜕𝑎𝑗
𝑙

The change of

the weight of

the jkth

neuron in

layer 𝑙 is equal

to

The output of

the 𝑘𝑡ℎ

neuron in the

previous

layer

multiplied by

The differential of

the sigmoid

applied to output

of the node

connected to

neurone 𝑗

The

differential

of the total

error at node

j in the next

layer

Page 20 of 121

The maths:
In order to update the weights we need to change them in proportion with their gradient with respect to the

change error function of the output of the network this this gradient is equal to the change in the error

divided by the change in the weight for a given interval. If we denote the error 𝐶 and the weights 𝑤. The

gradient of the weight at an index 𝑗𝑘 in layer 𝑙 is given by:

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙

We cannot arrive at the correct change in the weight using this formula alone, since we know neither the

change in the output of the network for a given interval of the weight nor the change in the weight for a

given change in the error. We can however apply the chain rule
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
∗

𝑑𝑡

𝑑𝑥
 to introduce variables that we

do know in the network. For a single forward propagation of the network we know the input for the network

and calculate the output, between we also must know the outputs of every layer and simultaneously

therefore the outputs of each layer we can denote the outputs of each layer 𝑎 ,the letter being chosen since

it is the value of the activation function applied to the “raw” output of the layer. Prior to the activation

function we also know this raw output which can be denoted 𝑧. If we use the chain rule twice, we can get

the following equation in terms of 𝐶, 𝑤, 𝑎 or in terms of 𝐶, 𝑤, 𝑧 and finally in terms of all of them: 𝐶, 𝑤, 𝑧, 𝑎

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑎𝑘
𝑙 ∗

𝜕𝑎𝑘
𝑙

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑧𝑘
𝑙 ∗

𝜕𝑧𝑘
𝑙

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑎𝑘
𝑙 ∗

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 ∗

𝜕𝑧𝑘
𝑙

𝜕𝑤𝑗𝑘
𝑙

we can break down the components of the function above, if we first look at the first operand,
𝜕𝐶

𝜕𝑎𝑘
𝑙

we can calculate the activated output of a node by dividing the sum of all of the raw outputs in the next

layer by the weights connecting them to the activated output we’re trying to calculate:

𝑎𝑘
𝑙 = ∑

𝑧𝑚
𝑙+1

𝑤𝑚𝑘
𝑙+1

𝑗

𝑚=0

Therefore, it follows that if we divide 𝜕𝐶 by this new form of 𝜕𝑎𝑘
𝑙 we can write

𝜕𝐶

𝜕𝑎𝑘
𝑙 as follows:

𝜕𝐶

𝜕𝑎𝑘
𝑙 = ∑

𝜕𝐶

𝑧𝑚
𝑙+1

𝑗

𝑚=0

𝑤𝑚𝑘
𝑙+1

The next component I considered is
𝜕𝑧𝑘

𝑙

𝜕𝑤𝑗𝑘
𝑙 this is the change on the raw output divided by the change in the

chosen weight. We can re-write this term since the raw output of a node divided by a weight is equal to the

output of the connected node in the previous layer thus:

Page 21 of 121

𝜕𝑧𝑘
𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑗

𝑙−1

Finally we must consider the last component
𝜕𝑎𝑘

𝑙

𝜕𝑧𝑘
𝑙 , the output of a node divided by its raw output, since we

can write 𝑎𝑘
𝑙 = 𝜎(𝑧𝑘

𝑙) it follows from rudimentary calculus that the change in output divided by the change

in input of the function is equal to the gradient or differential of the function at the input:

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 = 𝜎′(𝑧𝑘

𝑙)

thus we arrive at the final equation by substituting in our new found equivalencies into the original

equation:

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙

= ∑
𝜕𝐶

𝑧𝑚
𝑙+1

𝑗

𝑚=0

𝑤𝑚𝑘
𝑙+1

 ∗ 𝜎′(𝑧𝑘
𝑙

) 𝑎𝑗
𝑙−1

Error signal

We may also like to know the “error signal” of a neurone, denoted 𝛿. This is the gradient of a node with

respect to the error of the network which can be written:

𝛿𝑘
𝑙 ≡

𝜕𝐶

𝑧𝑘
𝑙

However, we can we-write this equation in terms of things we already know:

𝛿𝑘
𝑙 =

𝜕𝐶

𝑧𝑘
𝑙 =

𝜕𝐶

𝜕𝑎𝑘
𝑙 ∗

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 = ∑ (

𝜕𝐶

𝑧𝑚
𝑙+1

𝑗

𝑚=0

𝑤𝑚𝑘
𝑙+1) ∗ 𝜎′(𝑧𝑘

𝑙)

We can still do some work here since 𝑧 and 𝐶 crop up in both sides of the equation if we reduce the scope

like so:

𝜕𝐶

𝑧𝑘
𝑙 = ∑ (

𝜕𝐶

𝑧𝑚
𝑙+1

𝑗

𝑚=0

𝑤𝑚𝑘
𝑙+1) ∗ 𝜎′(𝑧𝑘

𝑙)

Here we see that we can from a recursive formula and re-write
𝜕𝐶

𝑧𝑚
𝑙+1 as 𝛿𝑚

𝑙+1

𝛿𝑘
𝑙 = ∑ (𝛿𝑚

𝑙+1 ∗

𝑗

𝑚=0

𝑤𝑚𝑘
𝑙+1) ∗ 𝜎′(𝑧𝑘

𝑙)

We can now use this form of the error signal to greatly optimise training. Since the earlier expression

calculating the gradient of the weights with respect to the error of the network requires 𝑗 + complexity at

for each weight of which there are 𝑘𝑗 many. Resulting in 𝑘𝑗2 complexity for each trained layer.

Instead we can calculate and store the error signal of the output of each layer a d multiply by the activation

of the error signal:
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑘

𝑙 𝑎𝑗
𝑙−1

We now first calculate our error signals for the output nodes of a layer then multiply each of these by the

output of each neurone to calculate its gradient. Giving the complexity, 𝑗 + 𝑗𝑘 ! (and no that’s not factorial

that’s an exclamation)

We can now adjust our weights in proportion to their gradient with respect to the error of the network if we

know error signal for each layer. With the following pseudocode:

For each j in Layer
 For each k in layer

 W[j,k] += ErrorSignal[k] * W[j,k] * LearningRate

In order to find the error signal used above we must follow the recursive formula for calculating the error

signals:

ErrorSignal[FinalLayer][0] = ErrorDifferential(Output, Target)
For k in each Layer

 For m in NextLayer

Page 22 of 121

 Sum += ErrorSignal[NextLayer][m] * w[NextLayer][m][k]

 ErrorSignal[Layer][k] = Sum * ActivationDifferential(RawOutput[Layer][k])

Now we mustn’t forget to change those biases!

To adjust the biases we want to know their gradient with respect to the error of the network this can be

denoted:

How an RNN differs
RNN’s have the ability to exhibit temporal behaviour over time, rather than finding a linear relationship over

time like a feed-forward neural network this makes them better suited to recognise handwriting, a data type

not dis-similar to mine. An example of this non-linear temporal behaviour can be seen below.

In handwriting this allows for unsegmented font but in my case will

aid recognition despite pauses in mouse movement.

An RNN could be viewed as multiple feed forward neural networks, like those described earlier, passing

information to each other regarding their inputs, where each network is fed a corresponding section from

the input data, like shown bellow:

Here the values 𝑋1 through 𝑋𝑡 represent t divisions of the input data, each are passed through a neural

network which makes a prediction based on its section of the input space,

The issue with the RNN model is the “vanishing gradient problem” due to the same weights being used to

calculate 𝑌𝑡 as you progress through the data the network “forgets” about older predictions due to the

nature of training with errors tending to extremes the further you move back through the network. Due this

LSTM networks have been introduced.

LSTM networks (Long short term memory) solve the forgetfulness of the recurrent model through the

addition of a number of layers that interact with each other, this includes the addition of passing additional

data to the next layer in the form of the store state, a state vector that is infrequently modified and is passed

forward to each following layer allowing LSTM’s to learn long term dependencies, this state is passed to the

network and is combined with the networks additions for that iteration. The diagram demonstrating the

flow of data and processing can be seen below.

(blog, 2015)

Page 23 of 121

Finite Impulse vs Infinite impulse
There are two main classes of RNN finite and infinite impulse. A both networks can be represented as

directed acyclic graphs, a graph plotting n vertex with paths between the vertices where there is no path

that cycle from a vertex v through all n many vertices back to vertex v. However, a finite impulse graph can

be “unrolled” and replaced with a standard feed forward network while in infinite graph cannot.

2 directed acyclic graphs plotted on the same set of vertices, you can see that there

is a path between any two vertices but there is no single cyclical path that

encompasses all vertices.

Explanation of matrix multiplication

Matrices are essentially n-dimensional vectors with given dimensions

such as n x m vector an example of which is shown on the right. Each

number in the matrix can be addressed as shown in the diagram with

the notation 𝑎𝑛,𝑚. The matrix can be stored in an array of dimensions

n*m whose definition would look like this:

Matrix[m,n] as float = ((1, 2, 3, …, m),

 (3, 4, 5, …, m + 2),

 ……………

 ,(……))

All mathematical operations can be performed on matrices however they differ from normal operations. The

easiest to grasp is addition as, matrix addition is simply element wise addition. The two matrices to be added

must be of the same dimensions and each element in the matrix is added to the corresponding element in

the other matrix. For instance, given two matrices A and B of equal dimensions you wish to add you must

take the 𝑥𝑡ℎ and the 𝑦𝑡ℎ of each and add them and place them at index x,y in an output matrix the

pseudocode for this is as follows:

Matrix1[m, n] as float = RandomMatrix(m,n)

Matrix2[m, n] as float = RandomMatrix(m,n)

MatrixO[m, n] as float

For x = 0 to m – 1
 For y = 0 to n – 1

 MatrixO[x, y] = Matrix1[m, n] + Matrix2[m, n]

Multiplication operations are a fair bit more complicated. Take two matrices of size 2x3 and 3x2 and multiply

4 2
8 5
7 3

 ∗
1 8 7
2 5 9

=
4 + 4 32 + 10 28 + 18
8 + 10 64 + 25 56 + 45
7 + 6 56 + 15 49 + 27

=
8 42 56

18 89 101
13 71 76

From the demonstration you can see that a 2 x 3 matrix multiplied by 3 x 2 matrix has a 3 x 3 product, thus I

can be said that a matrices of dimensions x, y and y, x have a product of dimension y, y. Thus, matrix

multiplication is not distributive since a y, x matrix and a x, y matrix will have a product of dimension x, x.

Pseudocode for matrix multiplication would look like so:

Page 24 of 121

Matrix1[m, n] as float = RandomMatrix(m,n)

Matrix2[n, m] as float = RandomMatrix(n,m)

MatrixO[n, n] as float

For row1 = 0 to n - 1

 For column2 = 0 to n - 1

 For column1 = 0 to m

 MatrixO[column2, row1] +=

Matrix1[column1, Row1] * Matrix2[colum2,column1]

GPU Acceleration using OpenCL
Neural networks require a very large number of floating point operations to be executed especially during

training, since a 4 or 5 layer network as I hope to be using with a thousand input nodes will have around 1.2

million floating point operations to perform each time the network is ran, during training the network will

have to be ran potentially millions of times requiring Trillions of floating point operations to be made in

total. If I ran the training on a an average CPU (2018) with 2 cores and 4 threads @3Ghz such as the Intel(R)

Core(TM) i5-7500 CPU training will be ran at 21.47 GFLOPS (Asteroids, 2018), this means I can run 21.47

billion floating point operations per second. In order to improve network performance further I could use

GPU acceleration, with my GPU (GTX 780Ti) I have the potential to run training at 5.04 TFLOPS, this means I

can execute 5.04 Trillion floating point operations per second! That gives over a 200x performance

improvement!

In order to fully utilize the GPU’s processing power, I intend to use OpenCL (open compute language) which

will allow me to run such matrix operations on any and all available hardware be it CPU or GPU. Officially this

makes it a “heterogeneous computing API”. It will leverage compute services in parallel – parallel computing.

It is an open standard contributed to by Intel, AMD and Nvidia; making it perfect for use in all systems as

these 3 companies supply almost all compute hardware for consumers – this means I could leverage the GPU

to run the network faster after it has been trained. There are added overheads to consider when using the

GPU to perform calculations as the CPU must prepare the data first as the GPU can only compute very

specific problems.

OpenCL functions with C++ to multiply matrices by creating a single dimensional array of size m*n (the two

dimensions of matrix multiplied together which then get sent through 2 dimensions of parallel threads called

“work-items”. The ability to parallelise the multiplicative work makes matrix multiplication far quicker when

using OpenCL.

In order to use OpenCL, I need the SDK which is only available from the contributors: Intel, AMD and Nvidia

each of which have locked down their respective versions such that the code would only work on one of the

above platforms. Consequently, I will have to proceed using solely CPU compute when training the model.

Page 25 of 121

DFD for RNN:

This diagram shows how data inputted to the network will be split across all input neurones, during training

the neurones adjust their weights outputting the result back into that layer of neurones until their predicted

output is correct according to the known class of the input data. The sigmoid functions after each neurone

serve to normalise the output between each layer such that the output from each neurone is always

between -1 and 1, likewise with the predicted output ensuring nothing outside -1 to 1 is inputted back into

the layers. In this example the network s very simple, 4 input nodes, 0 hidden layers and 1 output nodes. In

the actual implementation I will have at least 1 hidden layer and will vary the number of neurones in each

layer until the network is sufficiently complex to give an accurate output.

Page 26 of 121

Data collection
Mice

Since computer mice will be the source of my data I have decided to conduct some research into how they

operate and how data can be collected from them.

The computer mouse

The standard modern computer mouse uses a laser or LED based optical tracker, capturing motion relative

to a surface in two dimensions. This implies the surface is smooth, so given a high, resolution mouse bumps

in the mouse surface may affect mouse input, since the is no way of knowing how smooth the surface is I will

have to assume the surface is smooth throughout the investigation. The resolution of a mouse is defined by

its rated dpi, dots per inch, typical mice have a resolution of 400-800 dpi, but more expensive versions

feature up to 1600dpi. They also have a specific refresh rate, the number of measurements made per second

from 1500 to 6000 per second (by Nyquist’s theorem this is more than enough to represent 4-6Hz signals,

those found in PD tremors), combining the two is the image processing rate which is the rate at which the

data can be processed and sent to the PC, ultimately this is the bottleneck of the resolution of the mouse. All

of the above factors affect how detailed the mouse movement is captured, as well as how the movement is

scaled; consequently, I will have to normalise the mouse data from each source to account for the resolution

and sampling rates of each otherwise errors could occur when the data is analysed

(Wikipedia, 2018)

(Carmack, 2016)

Tracking

In summary, most tracking software uses web-based applications but they all simply record co-ordinates of

the mouse position and log them to a file. MouseTracker.org offered “normalised” or “raw” time, normalised

being a timestamp that has been converted to an easy format, either a decimal of known length since the

start of the program or a known format such as minutes, seconds, milliseconds … This allows for easy

comparison between values and between various sources of data. While raw values could have a different

scale or could be in an erroneous format for analysis. MouseTracker.org also “generates mean trajectories of

conditions and computes indices of spatial attraction/curvature and complexity”, plainly this means it can

smooth noisy mouse data by simplifying multiple co-ordinates into a line or curve. But this intrinsically

reduces the resolution of the data, which could help the analysis method distinguish between Parkinsonian

and normal mouse movement. The majority of these trackers store the output in a CSV format, suitable for

viewing in a spreadsheet program such as excel.

CSV Storage

CSV files store the data in a 2-dimensional array with the columns of data separated by commas and the

rows by carriage returns. This has the implication of storing the decimal values as strings of text.

Consequently, each digit would require 1 ascii character of storage (8 bits) plus would have to be converted

from a string to decimal when a calculation is to be made with that piece of data and vice versa when the

data is stored. I believe this would add an unnecessary overhead to the program having to convert back and

forth between data formats as well as require far more storage. This is a real issue since I intent to be

collecting a lot of data and don’t want to introduce unnecessary processing overhead since the data

collection will be running in the background of user’s machines so mustn’t consume a lot of resources be

them memory, storage or processing. Consequently, I will be investigating raw storage techniques later.

Src: (Freeman, 2018)

The above source also led me to finding the following sources (Notebaert, 2017) (L.Abrahamsea, 2016)

Which were both able to draw conclusions from the collected mouse data.

Microsoft – Win 32 C++ Mouse movement capture
Win 32 (32 bit windows kernel API) posts a WM_MOUSEMOVE message whenever the cursor is moved, the

message normally goes straight to the active window (the program currently being used); but this can be

changed.

Page 27 of 121

The WM_MOUSEMOVE message contains the X and Y mouse Co-ordinates 16 bits each.

I realised this may implement a restriction of x and y screen resolutions being less than 66535 pixels across

and may be adversely affected by multiple monitor displays.

I did some research which lead to the solution found here (Codeka, 2009), Accordingly there is an alternative

to WM_MOUSEMOVE, WM_INPUT which captures raw mouse data and is usually much higher resolution,

the X and Y co-ordinates are stored as longs, which are 4 byte each or 24 bits long and have a range of -

2,147,483,648 to 2,147,483,647 giving far more resolution than the processed 16bit data, I believe this will

help recognise the symptoms since early signs are supposedly very subtle. WM_MOUSEMOVE and

WM_INPUT are both handles, abstract references to a resource, often memory or an open file. The handle

serves to hide the actual memory address from the user. Once I have retrieved the WM message I can

lookup the handle it stores and use that handle to access the corresponding resource, in the case of

WM_INPUT this will be a data buffer of co-ordinates.

Reading Operation
In order to access the correct input device, the application must first collect information about the

connected input devices, this is done by GetRawInputDeviceList function which retrieves an array of devices

in a RAWINPUTDEVICELIST structure.

Using this array of RAWINPUTDEVICES you can then retrieve information about the given device with the

GetRawInputDeviceInfoA function and request basic device info. This returns a device info structure which

gives the sample rate per second! This will be useful later when I come to normalise the mouse data.

However, it does not give the sensitivity of the mouse (DPI) which is arguably more important.

To get mouse movement data I must first gain access to the WM_INPUT message which is restricted to

applications that have the correct TLC (top level collection for the mouse this is within usage page: 0x01, and

has an ID: 0x02). I will set dwFlags = RIDEV_INPUTSINK to allow me to collect mouse data regardless of the

window currently being used. The TLC is achieved by registering access to the corresponding raw input

device (mice for me) this is done with the RegisterRawInputDevices this must be done with refence to a

running process, for me that will be the process itself. I can then call get message and capture messages

posted to a window. For which I need to create a window to reference this is achieved by defining a windows

class with all the attributes that define the type of window you want. If the message name equals

WM_INPUT the lParam parameter will contain the X and Y coordinates as the low and high word the top and

bottom 32bits.

(Microsoft, 2018)

(Microsoft, 2018)

Page 28 of 121

Internet Data Transfer handling
How is Data transferred?

Computers communicate with the TCP/IP protocol, like a recipe of what computers must do to send data

over the internet. It defines what data to transmit, when to transmit that data and how to transmit that

data, if the rules are not followed a connection will not be established. Each home network is assigned a

unique IP address provided by their ISP, their internet service provider, this address can be used

communicate with a given device on the internet. In a home network all the computers and other devices

are connected to a local area network (LAN) to a main network router. The router then manages a

connection the clients ISP, from here the LAN is a member of a wide area network (WAN) controlled by the

client’s ISP. When you access a website via its URL the IP address of that server is found through the use of a

dynamic service provider (DNS) who’s IP address is known, the client requests the IP address corresponding

the URL. Once the IP address has been returned the client can exchange information with the server again

using the TCP/IP protocol. (Hope, 2017)

WAN data transfer
One way of implementing my solution will be having a computer at home or in college collecting data from

PD sufferers, this implementation will be connecting two client PC’s without dedicated URL’s. In other

words, two peers known as a Peer to Peer (P2P). In a peer to peer network all computers have equal

privileges and can act as both clients and servers. However, they are notoriously difficult since the WAN IP

address of home users changes regularly since there are insufficient IPV4 (Internet Protocol Version 4)

addresses to give each router a permanent unique IP address. This is due to IPV4 consisting only of 4 bytes of

data, giving only 4,294,967,296 addresses globally, this is not enough for the 24.3 Billion IOT (internet of

things) devices globally so ISP’s share addresses reallocating them each time a device needs to connect to

the internet. This means I would have to use a dynamic DNS (DDNS) service such as “NoIP” to assign myself a

URL that can be updated with my current IP address whenever it changes, if I went down this route I would

have to implement the solution as client-server network with me having to run a computer at home 24.7 as

a server to receive mouse data I’d also have to reconfigure my router at home to connect to a DDNS server

and forward a port to my server, in summary this would be very time consuming and costly as well as

security risk to my home network as there would be no firewall when connecting to that port on the router.

(Statista, 2018) (Wikipedia, 2018)

WinSock
My investigation calls for files to be transferred from a client PC to me in some way. This could take form as

a “peer to peer” transfer this is possible with WinSock, the main tool shown on all C++ based networking

tutorials I have seen, a programming interface that handles internet applications from windows following

the Windows open system architecture (WOSA) which defines a standard service provider interface (SPI)

configurable through the application programming interface (API), especially meaning WinSock handles the

services that are configured through the WinSock API. It deals primarily with TCP/IP connections but can

handle several protocols.

One Drive
Another potential solution is to use a web server to store the files, this server will have a URL already so its IP

address is easily accessible through the use of a DNS, the files can then be temporarily stored that server and

can be offloaded every afternoon by me to prevent the server from running out of storage space. A potential

host would be OneDrive which I have through my college account. I could then use the REST API from

Microsoft to control the upload of files to my OneDrive account. This method would be free and alleviate the

need for me setting up a DDNS server and allow easy storage. (Microsoft, 2018)

AWS
Alternatively, Amazon offer a free service called Amazon Web Service (AWS) offering 25GB of database

storage. They also have a C++ dedicated SDK with easy client-side encryption.

AWS is a 24.7 service offering virtual computers to perform a variety of tasks depending on the clients

subscription, the free tier offers 25GB of DynamoDB storage through NOSQL database service. NOSQL allows

Page 29 of 121

for the storage of almost any datatype rather than the usual tabular form of SQL based relation databases

such as Column, Document, Key-Value or Graphical storage types. The DynamoDB service also allows for

200M requests to be made each month which is more than sufficient for my use case. AWS also offers 750

hours of Amazon EC2 resizable compute capacity in the amazon cloud, offering Linux, RHEL, or SLES t2.micro

instance usage. 1GB of cloud based analytics. 750 hours of Amazon RDS, data base management time. 5GB

of standard storage. 250 hours of Amazon SageMaker ML model development time. And 1 million AWS

Lambda requests to be made, running basic computation based on events. However after reading the small

print I have found that AWS free tier is only offered with a 12 month free trial

(Amazon, 2018)

Handling shutdowns
An issue I will have to resolve will be handling system shutdowns, as I will have to insure that all the

collected data is uploaded to the server otherwise it will be lost. My initial thoughts on the issue are to either

stream the data to the server constantly or to upload all the data collected in X sample intervals and to catch

shutdowns and upload the data before the program is halted.

Stream

Form some early research I believe that streaming the data to the server will be rather processor

intensive as many thousand potential sample uploads will be initialised.

Buffered upload

The majority of sources seem to be in favour of a buffered upload, in which you wait for a sufficient

amount of data before uploading it to a server. Since this is far less processor intensive than the

stream of many small packets but will not result in a significant data loss due to restarts provided the

buffer size is minimised.

Conclusion
To conclude I think that using AWS will be the most effective solution due the large suite of options available

to me and the ease of implementation through their well-documented, open source, C++ SDK. Allowing

object-oriented management of AWS services rather than One Drives REST API which is deprecated code and

designed for C so offers no object-based facilities. WinSock would have been the ideal solution given that I

had a server with a static WAN IP, since I don’t it will be too time consuming to configure.

Page 30 of 121

The Fourier transform
I wish to apply a Fourier transform to improve the accuracy of the neural network as from my earlier

research (Adams, November 30, 2017) it showed a drastic improvement in the accuracy of ML algorithms

applied afterwards.

Fourier transforms function by decomposing an amplitude time signal into an amplitude frequency

interpretation. An example of this would be a 50Hz sine wave applied to a Fourier transform would output a

vertical line where X = 50 of equal magnitude to the RMS magnitude of the input sine wave.

(Wikipedia, 2018)

The Fourier transform in principle works by mapping the samples onto a circle incrementally and measuring

the centre of mass of the resulting deformed circle within each interval, broken down for each element in

the array the sum of all the elements is taken as a real and complex component of the magnitude of that

sample If it was mapped onto a polar grid (a grid where points are represented by their magnitude and their

argument, the angle above the initial line (positive x axis)) with incrementing arguments such that the

argument of the last index is 2pi. The resulting real and complex sum at that index represents the magnitude

of the that frequency at that index. Usually Fourier transforms are only applied to 2-dimensional data,

amplitude time, however my input data has 3 dimensions, X, Y and time. This has the effect of needing to

map the data onto a sphere with a pair of complex co-ordinates. Algorithms generally use the real

component of these co-ordinates so the output will be an N element long 2-dimensional array.

There many algorithms to transform data into a frequency amplitude domain. The standard algorithm has

n^2 complexity, this is not ideal as it would take exponentially long times to transform the large data sets

that I intend to input into the network. An example in pseudocode of a basic n^2 complexity algorithm is

shown below:

def discrete_fourier(x):

 N=len(x)

 fft = []

 for k in range(0,N):

 accum_r = 0

 accum_i = 0

 for n in range(0,N):

 tmp = -2 * math.pi * k * n / N

 accum_r = accum_r + x[n] * math.cos(tmp)

 accum_i = accum_i + x[n] * math.sin(tmp)

 fft.append(complex(accum_r, accum_i))

 return fft

(Own knowledge)

The main alternative algorithm is the fast Fourier transform (FFT) an n * log(n)

complexity algorithm, the most used variant is the Cooley Tukey transform:

n

log

n

n2

Page 31 of 121

void fft2 (complex<double>* X, int N) {

 if(N < 2) {

 // bottom of recursion.

 // Do nothing here, because already X[0] = x[0]

 } else {

 separate(X,N); // all evens to lower half, all odds to upper half

 fft2(X, N/2); // recurse even items

 fft2(X+N/2, N/2); // recurse odd items

 // combine results of two half recursions

 for(int k=0; k<N/2; k++) {

 complex<double> e = X[k]; // even

 complex<double> o = X[k+N/2]; // odd

 // w is the "twiddle-factor"

 complex<double> w = exp(complex<double>(0,-2.*M_PI*k/N));

 X[k] = e + w * o;

 X[k+N/2] = e - w * o;

 }

 }

}

(Wikipedia, 2018)

This functions by splitting up the standard Fourier transform into half’s (all odd index’s and all even index’s)
and recursively carries out the transform on each half of the tree until the array has shrunk to 1 index, within
each recursion the sum of each half of the tree is taken as a complex point mapped as if it was on a circle
with angle 2*Pi*k/N and magnitude equal to the previous recursions. This technique is often referred to as
the divide and conquer strategy.

The function takes two parameters, an array of complex numbers and the number of
complex numbers in the array. Complex numbers are numbers that have both a complex

and real component. The complex component is any multiple of 𝑖 = √−1. The Fourier
transform uses the two parts of a complex number to act as coordinates over time,
complex numbers are usually represented on an argand diagram shown.

In my scenario the complex part of each element in the array will be the magnitude of the
mouse coordinate, the issue occurs due to the fact the Fourier transform requires even sample intervals.
Thus I must interpolate between the samples to gain a common sampling interval.

Page 32 of 121

 Solution Summary
Level 1 Data Flow Diagram

Brief description:

Frist mouse details are collected and stored in the Mouse Input data store then the mouse co-ordinates are

streamed into the mouse input data store. Meanwhile the corresponding time stamps for each set of co-

ordinates is streamed into the time stamp data store. Once a data set has been collected and stored the data

is collected together into the mouse location over time and stored in a file, the details of the user (whether

they have PD or not) are then stored as a header in the file (this data will be collected when the program

first runs through a simple form). The resulting file containing mouse data over time and the persons details

are then ‘Sent to me’ as a separate process; I have delved previously into how this will be achieved. I then

c

c

Page 33 of 121

decode the data that has bee sent to me based on the mouse details, collected data and personal details.

This can then be normalised such that the rate of change of mouse movement is set to the same scale across

all samples such that the RNN can compare across all data samples. This normalised recording is then sent to

the corresponding class of data store PD or Non-PD such that I have an array of recordings from both, people

with and without Parkinson’s; I can later use that data to calculate the accuracy of my RNN. Next the data

will be split in the ratio 90:10, for training vs testing according to (Chamikara, 2014). The training data will

then have an FFT applied to it since this helped improve results according to some sources and then will be

passed to an RNN training procedure. The training model will then loop until the model is correctly

classifying the training data at least 75% of the time, although I hope to achieve better results than that.

Once the model has been trained it will be tested on the remaining 10% of the data, the accuracy of the

classification will then be evaluated and outputted for storage. If the model is not sufficiently accurate I will

adjust the network configuration until optimal results are achieved.

Page 34 of 121

Solution requirements
1. A system that can decide with a certainty of at least 75% whether a person is believed to have PD or

not

2. Collect highest possible detail mouse data

a. Is capable of clearly showing tremors

i. Mouse data is collected at the maximum resolution of the mouse which is stored

b. Sampled at a frequency of at least 6*2Hz

i. Due to tremors occurring at 4-6Hz multiplied by 2 due to Nyquist’s theorem

ii. Mouse refresh rate detected

c. Recognise new mouse devices when they are connected

i. Record available mouse information

d. Does not crash when all input devices are disconnected

3. Data collected is stored in a clear and known format that easy to view while taking minimal space

a. Data can be exported to Excel for visualization

i. Exported data is split into three columns, mouse X,Y coordinates and time

ii. All logs have headers that are easy to understand

b. Data is stored in binary for minimal file size

i. A predefined data length is established that allows for storage at maximum

resolution across all input devices

c. Data can be continually stored with a stream

i. Stream does not pause

ii. Stream does not require large memory buffers >500MB

4. Data is transmitted to a web server for storage

a. Data being transmitted is encrypted

i. Can be quickly encrypted and decrypted efficiently without utilizing to many system

resources

b. No data is lost as it is stored

c. Data can be accessed at all times

d. Restarts do not cause the loss of any data, i.e. the data must be streamed to the sever

5. Create a model of Parkinson like mouse movement

a. Model is scaled the same as mouse input

b. Model uses a smoothed “healthy” input

c. Has a 4-6Hz sine wave applied to it

d. Contains noise with sporadic peaks

6. FFT used to Pre-process

a. Uses the Cooley Tukey recursive algorithm

b. Can be ran in n*log(n) time

7. Multi-Layer recurrent neural net training

a. Model can be trained with minimal compute power, taking a matter of days of compute

time on a i7 machine

8. Multi-layer neural net to process user mouse data

a. Is more than 75% accurate

b. Displays output clearly if requested

c. Does not crash given any extreme mouse data

9. The entire solution can be ran on a client machine with minimal impact

a. Solution uses no more than 10% of the CPU (on an 4 threaded processor)

b. Solution uses less than 500MB of RAM

c. Causes no mouse “stutters” or unresponsiveness

Page 35 of 121

Requirements blurb

ID description

1. This is the main requirement for my project that it can correctly classify between parkinsonian and
non-parkinsonian mouse data. This will be verified by testing the final trained model on all
available mouse data at various severity’s of Parkinson’s simulated and measuring the percentage
of correctly classified samples. If it falls above 75% this requirement will have been met. The 75%
value was found from my research as the current accuracy of tests.

2ai. The system collects mouse data at the highest resolution possible for the device, usually higher
then the resolution windows converts to, the higher the resolution the solution is able to collect
the more data it will have to make predictions with.

2bi. Nyquist’s theorem states that: an analogue signal waveform may be uniquely reconstructed,
without error, from samples taken at equal time intervals. The sampling rate must be equal to, or
greater than, twice the highest frequency component in the analogue signal. Consequently,
although the mouse movement may have compents of frequency higher than 6hz, since the
solution is only detecting components in the range 4-6Hz the maximum required sample rate to
reproduce these frequencies would be double the max frequency I wish to reproduce therefore
the solution must be able to sample mouse data at 12Hz.

2bii. The mouse refresh rate is determined using windows API tools, this can be done algorithmically or
by requesting the value from the mouse device.

2ci. Windows can handle a multitude of mice being connected simultaneously which can all be used
equally to control the windows environment, the best example of this is laptop users with mice as
the trackpad will remain enabled while the mouse is used, they may even alternate between
trackpad and mouse use.

2d. The method employed in the solution can correctly handle the disconnection of all mouse devices
and their subsequent re-connection, as this may occur for desktops with wireless mice or for what
ever reason the usb is removed. This is less of an issue for laptop users but in the eventuality the
solution should not miss any opportunity to log data due to a crash of this cause.

3ai/
ii/iii

The mouse data export should be easy to understand as the user should be able to clearly see
what data is being collected about them

3b. Binary storage implies that the raw binary values for each sample are written to a file, this file will
not be readable unless with a hex editor as no values represent plain text, such as ascii. This
storage strategy is crucial as it minimised the size of the data stored on the users device especially
since a large amount of data is intended to be collected, it will also increase the speed of file
writing as less data will have to be written to the secondary storage medium.

3ci. Data is continuously streamed to the file such that no mouse data is missed while the data is being
stored. This strategy also spreads the load over time on the secondary storage device.

3cii. Application uses the minimum amount of memory possible as the application should have the
minimum impact on system resources as intended to be a background task.

4ai. Data sent over a network connection is encrypted, although the data is not extremely sensitive the
program should comply with the data protection act to minimise the chances of a data breach

4b. Data cannot be lost as it is sent over a network as this could cause anomalies that the neural
network may train to spot rather than differentiating between actual parkinsonian characteristics.

4c. The server storage must be designed such that data can be retrieved at all times, even when
clients are connected and uploading files, this requirement ensures that data sent to the server
can actually be read from the server.

4d. Any and all data sent to the stream must be error checked and should be streamed for minimal
data losses during upload, in the event of a restart.

5a./b
/c/ d

Compare normal data and that which has had Parkinson’s simulated, the two sets should look
similar with smooth motion over the same scale but the parkinsonian data should show a 4-6hz
sinusoidal nature as well as occasional cliff like features.

6a. Operation of the Cooley Tukey Fourier transform can be demonstrated by stepping through each
operation

6b. It can be shown that the number of iterations for a given input size are consistent with the
theoretical n log n timings

Page 36 of 121

7a. The training component of the project should be able to execute without severe bottle-necks
(when the given component is the primary cause for the performance limitation) when using an i7
which I take to be ab approximately 3Ghz or more processor with 4 cores and hyperthreading.

8a. The neural network library is globally 75% accurate on suitable testing examples

8b. During training the progress of the training can be clearly seen over time showing the classification
of various test classes

8c. The network can handle a variety of data which may cause incorrect classifications but not for the
network to crash at any point.

9a/ b The client that runs on the end users machine does not use too much of the available system
resources, at most 10% of the CPU’s processing performance and 500MB of system memory as
this leaves the user with enough for every day tasks without noticing much of a difference.

9c. The client does not cause any unresponsiveness due to requesting mouse data or network
processing as this could hinder the users experience and lead to frustration especially if the
machine is used for work.

Page 37 of 121

Design
The project will consist of 3 main parts made to operate in turn during different stages of the investigation.

The first is the Mouse Client, this is a small client that will use minimum system resources to collect and

upload mouse data from a population of computer users to be sampled to a file storage server using

authenticated and encrypted network transfer.

The second the model trainer, this will take the collection of data from the population and superpose the

desired Parkinsonian characteristics on a subset of the imported data (half of the data will have the

simulation applied as the network must not demonstrate a bias from training) and use the two data sets

generated to train a neural network to recognise each class with an accuracy greater than 75%, the network

will be trained for as long as possible until the outputs have converged for long as possible.

The final section is the live detector, this will apply the network trained previously in a small client to run in

the system tray which will log the mouse data through the same methods as the mouse client, and once

sufficient data has been collected classify the data using the given network. The results will then be

displayed graphically when the user has decided to view them.

Detection of

Parkinson’s

Mouse data Train Model Live analysis

Win API

interfaces

Sample

logger

CSV

converter

Sample log

decoder

Fourier

Transform

Neural

network

trainer

NN Model

GUI results

Page 38 of 121

Mouse Data

WinAPI Interfaces

Windows API interface creating a hidden window registering corresponding window classes and raw input

devices, then monitors messages posted to the hidden window, decodes them and filters for raw mouse

data – returning the change in X/Y co-ordinates since the previous message. Also retrieves time stamp

according to the systems clock, returning the time delta between each sample.

Sample logger

Writes mouse samples and time stamps to a binary file with minimum processor utilization. As well as

managing a FTP file upload stream to a server defined in a decoded config file

CSV converter

Takes binary file(s) from the sample logger and convert(s) them to comma delimited strings as a CSV file for

viewing in Excel

Train Model

Sample log decoder

Takes a binary file from the sample logger and reads all values into arrays, for X coordinates, Y coordinates,

the time in microseconds starting from 0 and mouse sample rate.

Fourier Transform

Recursively divides the samples (with even intervals) into odd and even indexes computing the magnitude of

the frequency at each recursion out from the terminal call in the stack. Applied to each vector inputted to

the trained neural network

Neural Network Training using backpropagation

Train weights and biases of a neural network for application in the feed forward neural network during live

analysis, achieved through backpropagation using labelled classes from a large collection of logs.

This will rely on an extensive matrix mathematical library I intend to develop, which can also utilise a GPU for

accelerated network training. All neural network and matrix libraries will be fully parametrised so different

configurations can be tested.

Live analysis

WinAPI

Will act much the same before but won’t call any sample logger processes

Fourier Transform

An identical Fourier transform as was used for training

NN Model

Model applied linearly to as much of the data sampled as possible, while data is being collected

compounding to a given prediction

GUI results

GUI to be ran from an icon in the system tray as to be subtle, displaying options to view the current results

graphically over time, and a final prediction. With options to start/stop collection and exit the application.

Page 39 of 121

Mouse data Collection

Interface
I intend for users interface with the mouse client through the use of a system tray icon

with a context menu, this is a popular method for background windows apps to interface

with users as it allows the user to quickly access the program without using valuable

screen space. For this I need an icon to represent the program so have created the

following image – I kept in mind that any interfaces must not demonstrate that the user is

testing for Parkinson’s so chose a mouse-like icon as shown.

When the user clicks on the icon a menu will be displayed with the utility options for the program, these will

consist of being able to pause/start collection allowing the user to decide what data is sent. There will also

be options to enable/ disable auto starting the mouse client data collection program with windows. Next

there will be an option to exit the program without removing it from auto-start. Finally an item to load a

configuration from a file. The configuration will be a text file with a structure described later to update the

configuration of the program. I will also add an option to hide the menu so it is clear how to do so

The menu items will manifest in the following order:

Configuration

The configuration file will be used to store information concerning desired server to upload logs to during

data collection. It will contain the URL of the target server, and any authentication details of the FPT server

chosen to upload the files to. The configuration file will be stored in the same directory as the application

and can easily be replaced in order to change the target server or update security settings in the event of a

breach adding desirable flexibility to the application. On application start up the program will Import the

configuration file retrieving the URL, username and password which are read as strings after the following

keywords “URL: ”, “Password: ”, “Username: ”, until the next carriage return or the end of file is reached. If

there is any error when reading the username or password strings, authentication to the server will be

disabled. However, by default the .Net libraries FTP server API provides automatic SSL encryption, given that

the server supports it, reducing the chance of data being comprised, I believe this to for fill my requirement

sufficiently since the mouse data does not explicitly contain any personal information and any that could be

gained would not warrant the loss in performance due to complex encryption processing. On reading the

configuration if the URL is invalid a flag will be set to disable uploading all together, however local logging to

a file will continue. When the user clicks on the “Load Config” label they will be prompted with a windows

file explorer window to locate the path of a new configuration file; the new upload details will be imported

from the file like they are on start-up and the URL, username and password will be overwritten.

Pause/Start

Enable/Disable Auto-Startup

Load Config

Exit

Page 40 of 121

Auto-start

Auto starting the program will by default be enabled, allowing the program to automatically start up with

windows. This will function by locating the windows register at the location below:

Software\Microsoft\Windows\CurrentVersion\Run and then writing the string representing the path of the

mouse client executable, when the application is first run. Since windows checks this location for Auto-Start-

up items the client will then be launched on each start up. Consequently by default the menu will display the

label to disable Auto-start. If disable is chosen the registry key will be deleted erasing the mouse client from

the start up menu. If it’s enabled the same process is carried out as at the start of the program creating the

key in the register. At every stage of deletion and creation the status of the register will be checked to

ensure no errors have occurred, since the register, if corrupted could corrupt the users operating system. If

an error occurs the user should be notified with a message box describing the error.

Pause/Start

The mouse client will also have the ability to pause all logging, this will be controlled by a flag that will cause

the message loop to skip adding samples to the buffer and prevent any local logging or FTP uploads. The

message loop will still run to maintain functionality as the user interface of the program relies on the

message loop functioning, I believe this to be ok as the utilization of resources will still be greatly reduced

and the user will always be able to exit the program fully if they wish to conserve all resources possible. By

default the flag will be set to enable logging so the label will display the option to “Pause”; on clicking the

flag will be switched and the label changed to “Resume”, in addition the task icon name will switch to

logging paused to remind the user if they pass over the icon. If the user decides to resume the label will be

switched back to “Pause”, the flag will be switched and task icon name switched back to mouse client.

Exit

The exit label will result in a halt message being sent to the application, on reception of the halt message all

data structures and allocated memory will be freed as well as de-registering any window classes and mouse

access. In addition to this the log files must be safely closed and any file uploads to the FTP server must be

checked and ensured successful. Upon verifying that the above has been completed the program will halt

and the application will terminate. All registry edits will remain unchanged however – maintaining auto start

up if it has been enabled. On exit the program will also be removed from the users system tray to prevent a

“ghost” icon.

Page 41 of 121

Menu Pseudocode

OnPause(){

 LogFlag = false

 SetLabel(“Resume”)

 SetIconName(“Logging Paused”)

}
OnResume(){

 LogFlag = true

 SetLabel(“Pause”)

SetIconName(“Mouse Client”)

}
SetAutoStart(){

 String Path GetEXEPath()

 SetStartupRegister(Path)

}

RemoveAutoStart(){

 DeleteStartUpRegister()

}

LoadConfiguration(){

 File = GetFileUsingFileExplorer()

 File.open()

 Index = File.SearchFor(“Password: ”)

 Password = ReadStringFrom(Index)
 Index = File.SearchFor(“Username: ”)

 Username = ReadStringFrom(Index)

 Index = File.SearchFor(“URL: ”)

 URL = ReadStringFrom(Index)

 If(Password or Username = NULL){

 Authentication = false
 }

 If(URL = NULL){

 Upload = false

 }

}

The simple pseudocode above demonstrates the core functionality the system tray menu will rely on when

each menu item is selected. It also illustrates the required variables to operate the tray message loop.

OnPause Is called when the pause button is clicked, it sets the log flag to false to disable logging; next it

changes the label of the button the user clicked (Pause) to “Resume” so the user knows the function of the

label has switched, finally it switches the name of the icon in the system tray to “Logging Paused” such that

when the user hovers over the system tray icon “Logging Paused” appears by the mouse cursor.

Page 42 of 121

Data collection

The mouse clients main purpose is to log X and Y co-ordinates over time to a file which can be sent to a

server for storage, this data will then be processed and used to train the neural network. Since the

processing phase requires the application of an FFT all samples must be evenly spaced, processes used to

achieve this are discussed later, thus we must store a time stamp, since there are numerous ways of storing

the 3 data elements I have documented how I intend to store them bellow:

I will be using the windows 32bit API to collect mouse data through the use of the WM_INPUT message,

which holds the change in X and Y coordinates since the last message was posted, represented as 32bit

signed integers, to reduce the number of operations in preparation to store these values I will be storing the

raw delta in the sample log, consequently the first 64bits in each sample in the log will represent the X and Y

coordinates respectively, each using 32bits. To record the time I will use the C++ standard libraries Chrono

header, it's methods can be used to get the current time since the epoch (January 1st 1970) in microseconds,

this gives me a high enough degree of accuracy to store mouse movement of a frequency up to 20kHz

(assuming a given mouse had a sample rate of 40kHz). However microsecond precision results in the time

stamp being a 64-bit unsigned integer. In order to make the recorded data easier to interpret, I will store the

time delta between samples. Otherwise if the user exports the data, as I stated in my requirements, it will be

difficult to differentiate between each of the very long integers. In order to ensure that the time stamp is,

under no circumstances, concatenated - losing data, I will store the time delta as a 64bit unsigned integer. In

summary the total sample size will be 128bits, the first 32 for the X delta, the next 32 for Y delta and the last

64 for the time delta. I have tabulated the structure below indexed in bytes.

Storage structure

Table 1

Index
(in
bytes)

Data
Type

Size of data type
(bytes)

description

0 LONG 4 Mouse X Co-ordinate

4 LONG 4 Mouse Y Co-ordinate

8 UINT64 8 Time in microseconds

16

Page 43 of 121

Data logging pseudocode

MouseMoveEvent(){

 If(Not LogFlag){

X = GetMouseX()
Y = GetMouseY()

TimeNow = GetTime()

WriteSample(X, Y, TimeNow - PreviousTime)

PreviousTime = TimeNow

If(Upload and N >= 2048){

 If(Encription){
 FTPUpload(URL, UserName, Password)

 }

 Else{

 FTPUpload(URL)

 }

}
}

Return

}

Here you can see the outline of how data will be collected.

First, I check if the log flag is false, if so, logging has been enabled – i.e. the user has not pressed pause.

Otherwise the procedure continues to retrieve the current delta in X, Y raw coordinates and the change in

time since the last sample. All these values are then written to the corresponding fields of the binary file. The

counter, if the upload flag is set, I then check if N is greater than 2048, indicating that sufficient samples have

been collected to initiate an upload, finally I check if the configuration defined authentication parameters if

so, I upload the file with the given authentication, otherwise I upload without authentication, upon

completion, N is then iterated, and the function halts.

Mouse data retrieval

I will use a winAPI function to fill a structure with mouse device information. The handle to a structure

where the raw input is stored is referenced by the lparam of the input message. I can then navigate and

retrieve the change in the X and Y co-ordinate of the mouse. I can retrieve the current time with the use of

the chrono library, returning a 64bit timestamp. The X, Y and Time values are then written to a binary file.

The CreateWinAPIWindow function configures the properties of a window class to be later registered,

allowing the creation of the window later in the program, and for the relevant messages to be sent to it.

The RegisterDevices function creates a raw input device structure to register the window for the collection

of mouse data.

Page 44 of 121

Mouse Data collection full flow chart

Page 45 of 121

Firstly, logging will configure automatic start up, in the event that something goes wrong during setup due to

invalid permissions the program will then start up on the next initiation of the system with elevated

privileges. Next, I read the configuration folder which holds information concerning the upload if logs to a

server, including the username, password and URL of the server.

I will then open a file to log the coordinates too and create a new hidden window. This is the one that will be

receiving messages from windows concerning current events. In order to receive global mouse events, I then

register the application for use with mouse devices connected to the system. Finally, I create a system tray

and populate its menu, giving the user control over the function of the program. I then loop eternally

checking for new messages and dispatching them until the exit condition is met by the user choosing to exit

in the system tray menu.

When a message is dispatched the message process call-back function is called and passed information

concerning the window and the corresponding message that has been sent to it.

The message process then decides the type of the message, there are three scenarios here:

1. WM_DESTROY, this message is posted if the program is expected to halt. Here I close the sample log

file and closes the open hidden windows by posting a quit message, then unregister any devices and

window classes, finally I terminate the program.

2. System tray event message, which will be sent to the application when the user selects an option

from the system tray menu. Within the menu there are a few more options

a. Pause logging – this will set a logging flag to false and disable any future logs being stored or

uploaded until logging is resumed/the program is restarted

b. The user chooses to export the collected data – as mentioned in my requirements, I intend

to allow the user to export all collected data that they may be concerned with.

Consequently, I will place an option in the system tray that will search for logs in the

designated storage location and iteratively export them to CSV documents where they can

be read by a spreadsheet application such as google sheets or Microsoft excel.

c. Next the user may decide to remove the application from their systems registry containing

auto-starting applications. If they choose this option, the application will locate the key in

the registry and delete it methodically checking at each step in the process due to the risk

editing the registry imposes.

d. Finally, the menu will contain an exit function, which will execute the same methods as the

program would in response to the destroy message in the message process. This involves

closing the sample log file and closing the open hidden windows by posting a quit message,

then unregister any devices and window classes, finally I terminate the program.

3. WM_INPUT message, here I first check for the disable upload flag, if not set I will then pass over to

the input handler to retrieve the mouse data, if successful the application will log the mouse data to

a file with the current timestamp, given as a delta since the last timestamp. Then will upload the log

to the FTP file server if uploading has been enabled and there is a valid connection to the server.

Page 46 of 121

Exporting to CSV for viewing in excel
From my requirements I also must make the data easy to view, consequently I aim to add the export to CSV

function I alluded to earlier to convert binary storage files to a CSV (Comma Separated Values) format this

will be achieved by reading each sample in the binary store and writing it into a CSV file, after ensuring that

the file is not in active use. I will simply export the samples with each X,Y and time data item separated with

commas and then terminate the sample with a carriage return, in C++ this is defined as the special character:

\n.

The following pseudo code demonstrates how I will convert the binary store into a CSV file:

ImportSamples() as SampleArray

FileSize = CalculateBinaryFileSize()

SampleRate = 0

SampleArray[FileSize]

For each 16bytesample to FileSize

 SampleArray.XDelta = ReadLong()

SampleArray.YDelta = ReadLong()

SampleArray.Time = ReadLongLong()

End For

CloseBinaryFile()

Return SampleArray

WriteToCSV(SampleArray)

OpenFile(“Logs.csv”)

For each Sample in SampleArray

 File.write(ToString(Sample.XDelta))

File.write(‘,’)
File.write(ToString(Sample.YDelta))

File.write(‘,’)

File.write(ToString(Sample.Time))

File.write(‘\n’)

End For

 CloseFile()

Page 47 of 121

Neural Network Training
The Neural network trainer is the second of three modules in my project, it will contain all the utilities to

format raw mouse data, simulate parkinsonism, carry out Fourier analysis, perform matrix mathematics on

the CPU and GPU which will combine to train a neural network of a desired size.

Representation
Each sample will be represented with a simple structure with the following properties

Each log, once imported, will be stored in memory as an array of samples

Formatting data

Normalisation

All the raw mouse data is normalised before it is processed by the network for training or for classification

using the main neural network process. This stage ensures that there are no extreme values that may hinder

the classification of the network or cause an extreme variation in weights during training, regressing the

error’s convergence. The normalisation I will use will consist of reducing the mean to 0 and the variance to 1

such that weights and biases are responding to a known range of inputs. Otherwise input data will cause

wild variation in output classification. To find the mean I will simply sum the x and y co-ordinate delta’s in

each inputted 2048 data set and divide the calculated total by the size of the data set (2048). Since the sum

of the x and y co-ordinates deltas is already known, being the final X and Y co-ordinates, an optimisation can

be realised that the mean of the x and y deltas is equal to the final x and y co-ordinates divided by the

number of samples.

 To calculate the variance, I will use to the following formula:

𝜎2 =
∑ 𝑋2

𝑁
− 𝜇2

I have chosen this formula since the mean will have been calculated and adjusted to 1 prior so will only have

to be calculated once. I then only need calculate the sum of the input squared divided by the number of

samples.

Once the variance has been calculated I will iterate through each value dividing by the variance and subtract

the mean, giving a normalised output with mean 0, variance 1.

Normalise(Sample Input[])
 XMean = Input[Input.length].X / Input.length

YMean = Input[Input.length].Y / Input.length

For index = 0 to Input.length

 XSquaredSum += (Input[index].XDelta)^2

 YSquaredSum += (Input[index].YDelta)^2

XVarience = XSquareSum/Input.length – XMean^2

YVarience = YSquareSum/Input.length – YMean^2

For index = 0 to Input.length

 Output[index].XDelta = Input[index].XDelta / XVariance – XMean

Output[index].YDelta = Input[index].YDelta / YVariance – YMean

Sample

Long XDelta

Long YDelta

Long X

Long Y

Long Long Time

Long Long DeltaTime

Page 48 of 121

Interpolation

Delving further into the use of a Fourier transform yields that my data does not match the required data

type for input into a Fourier transform. That is due to the expectation that the data inputted into the

transform has been sampled in a period of 1 second and that every sample in the array was taken with an

equal interval between every other sample. Since the mouse data collected will have a seemly random

sampling interval since mouse drivers have a relatively low interrupt priority, so despite having a fixed

sample rate the arrival of the sampled data varies massively, this is ok for normal operation provided that

the change in position is accurate. However in my use case I need a fixed – known sampling interval. Once I

have calculated the average interval I will then be able to pass the data through the Fourier transform and

scale the frequencies in accordance with the following equation derived bellow:

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑆𝑐𝑎𝑙𝑎𝑟 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝐼 𝑛𝑡𝑒𝑣𝑎𝑙𝐼 𝐼𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2

Where the frequency scalar is a scalar applied to the index of the output of the transform.

There are two main ways of achieving this normalisation. The first demonstrated bellow is the interpolation

at even intervals between all samples, this requires the generation of a line using all the data provided,

otherwise the new data would be heavily impacted with noise, and then sampling along that line at even

intervals. This method is very processing intensive but would generate the closest representation of the data

at the given sampling interval.

Page 49 of 121

The second method is depicted bellow, it uses the assumption that, while moving the data, when sampled

from the mouse, was sampled at even intervals and that this interval can be calculated from the closets data

points gathered. As well as the assumption that the neural network will be able to differentiate between

data sampled at different average rates with a corresponding different frequency scalar, provided that this

frequency scalar is given. Based on the above assumptions we can simply fin the lower quartile of the

intervals in the data set and assume that is the sampling interval of the mouse. Then we can look at any gaps

that are outside a certain deviation from the average sampling interval. For my project I have defined the

following maximum deviation:

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∗ 2

If any interval falls above the maximum interval I will generate however many samples as necessary to stay

below the maximum interval, in the gap, all of which will have the same X and Y co-ordinates and

consequently X and Y deltas of 0. The interval of these generated samples will be equal to the interval that

exceeded the Maximum interval divided by the number of samples.

If the gap is larger than 10 * the average interval, the gap will be ignored as it ill be assumed that the mouse

motion had stopped in that gap anyway, so too much null data would have to be created to fill the gap,

reducing the amount the transform can work with.

Due to the relative simplicity of this method I have chosen to use it in my solution and have documented the

algorithm in psuedcode.

Page 50 of 121

The pseudocode for such an interpolation would look as follows:

interpolateSamples(ArrayOfSamples, newSampleInterval)

 time = 0

 MinValues[Size/4] = FindMinimumValues(ArrayOfSamples.Interval[], Size/4)

 AverageInveral = AverageOf(MinValues[100] to MinValues[200])

 newArrayOfSamples[ArrayOfSamples.Size]
 newArrayPtr = 0

for each Sample in ArrayOfSamples

if Sample.interval > 2*AverageInterval

 NumberOfNewSamples = Sample.interval / AverageInveral

for i = 0 to NumberOfSamples

 newArrayOfSamples.append()
 newArrayOfSamples[ptr] = previousSample

 newArrayOfSamples[ptr].timedelta

+= previousSample.time * Sample.interval/i

 ptr ++

 end for

newArrayOfSamples[ptr] = Sample
ptr ++

First I will find the minimum sample interval from the first quarter of the given array, I will then use the

upper half of the array produced to calculate average interval. This will help remove the anomalous

minimum values from the calculation and leave enough values to get a reliable average given that this

function will be applied to a large array of size ~1000 to 2000. Then I loop through each sample in the array,

checking if the interval is more than 2*average. If so calculate the number of samples to fill the gap with, and

loop through adding the new x many samples to the array. Afterwards regardless of whether new samples

were added or not, add the original sample to the array.

Page 51 of 121

Fourier Transform
I will now go into depth on how the Fourier transform algorithm will be implemented, following its recursion

and the data types involved

In summary the Fourier transform is a recursive function to convert an array of displacement over time, of

size 2𝑛, into an equally sized array of amplitude over frequency, with a time complexity 𝑛 ∗ log (𝑛)

In example if the sign wave (left) was input into the function the result would be a point at 1 (right)

It has a base case when the array size is less than two, otherwise the function will first split the array into

two effective sub arrays, each half the size of the input. The even indexed data elements from the input will

then be moved to the first new array, maintaining their sequence, while the odd indexed elements are

placed similarly in the second array. The two arrays are then combined to create a new array of size equal to

the input.

It then passes the first half of the input matrix to a new instance of itself then the second half to another

new instance of itself, until the base case is reached. Once the base case is reached the stack is traversed

outwards. At each stage the function loops through every given index in the first half of the input and

computes the exponential at each index of the given input:

𝑒
−2𝜋𝑖∗𝑖𝑛𝑑𝑒𝑥
𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑧𝑒

It then adds the to the output array at the same index, the value of the input at that index plus the result of

the above exponential multiplied by the input at that (index +
Input Size

2
), (the index in the second half of

the input). It then does the converse adding to the output at (index +
Input Size

2
) the value of the input at

that index minus the result of the above exponential multiplied by the input at that (index +
Input Size

2
).

The pseudocode for the recursion is as follows:

FourierTransform(Complex Input[], int Size)

 //Base case

 If(Size < 2)

 Return
 Else

 Split(Input,Size)

 FourierTransform(Input[0 : Size/2], Size/2)

 FourierTransform(Input[Size/2 : Size], Size/2)

 for(int index = 0 to Size/2)

 complex Exponential = 𝑒
−2𝜋𝑖∗𝑖𝑛𝑑𝑒𝑥

𝑆𝑖𝑧𝑒

 Output[index] = Input[index] + Exponential * Input[index + Size/2]

 Output[index + Size/2] = Input[index] - Exponential * Input[index + Size/2]

 End for

 End if

Page 52 of 121

I have constructed a flow chart to help further consolidate understanding – showing how the data flows and

what operations are performed on which data structure and any logical statements.

Page 53 of 121

Simulating Parkinsons

From my research I found 2 key symptoms of parkinsonian behaviour, the first is a 4-6Hz gitter which I plan

to represent with a 4-6Hz sine wave of varying amplitude and frequency within the 4-6Hz range. The

amplitude will be centred around 25% of the amplitude of the average change in mouse co-ordinates, this

ensures that the gitter is above the noise floor of the data. I intend to reduce that percentage until the

network cannot correctly classify at the required level of accuracy. I also intend to vary the position of the

sign wave with respect to the data.

The next symptom is a cog wheel motion, in which the user moves with increasing speed but stops suddenly

before rebuilding speed. I will simulate this by adding an ascending value for a period of samples with

varying, sign, position and amplitude.

The pseudocode to generate the sign wave is very simple, but must also incorporate a scalar, since the

samples are not taken at a fixed frequency.

AddSin(AmplitudeArray, Scale){

 Freq = GetRand(4,6)
 Amp = GetRand(0.1,0.4)

 XOffset = GetRand(0,2Pi)

 YOffset = GetRand(-0.2,0.2)

 For index = 0 to SampleArray.Size{

 AmplitudeArray[index] += sin(index * Scale * 2 pi * Freq - XOffest) + YOffset

 }
}

Scale is the interval scalar, the average time between samples in seconds.

The amplitude is of that magnitude since at this point I intend to have normalised the data to have a mean of

0, and variance 1. Thus a 0.10 and 0.4 is a suitable range centred around the 0.25 mentioned earlier. The X

offset is valid as the sine function repeats itself after every 2pi interval, with a random offset in that range

the sine wave can have any phase on the data. The YOffset is small and only serves to vary the data, making

the wave more difficult for the model to recognise.

The cog wheel effect will be simulated as follows

AddCogWheel(AmplitudeArray){

 NumberOFCogs = Rand(10,20)

 For i = 0 to NumberOfCogs{

 Ampl = rand(0.5,1.5)

 Length = Rand(20,40)

 StartIndex = RandStart(0, AmplitudeArray – Length)

 For n = 0 to length

 AmplitudeArray[StartIndex + n] += n*(Ampl / Length)

 }

}

}

Page 54 of 121

I have demonstrated an exaggerated application of the sine function and cog wheel, with Excel’s

mathematical functions, on some data I generated.

The first graph demonstrates each individual feature, where orange is the raw mouse data, grey is the plot of

an exaggerated cog wheel effect and sine wave.

You can see below the sum of the above data, it produces an undulating pattern in the data with sharp cliff like

edges. I hope that, even though the effect will be far subtler in the final solution, the neural network once trained

will be able to easily distinguish the parkinsonian-like and non-parkinsonian-like data. Especially since they are

generally very good ant recognising contrast in data.

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200

Components

Sine

Mouse Data

Cog Wheel

-10

-5

0

5

10

15

0 200 400 600 800 1000 1200

Sum

Page 55 of 121

Neural net
Determining network size

FFT Sizes

My first thoughts on the size of the input layer is 1024 nodes; I have chosen this number as it is of the order

2^n so the FFT can be easily used without having to create trailing 0’s while being small enough that the

Fourier transform will be able to run quickly. I have verified the time it takes for a Fourier transform of

resolution 1024 is on average 6.829ms which varies by less 0.5ms depending on the input data. However it is

easy to vary the size of the transform and I will do so if the Neural Network is more efficient at that input

layer size since I believe that the network will take far longer to execute than the Fourier transform.

Consequently, I have tabulated the various sizes of Fourier Transform possible:

Time to compute Fourier transform of various sizes

Input Size

Average Time to complete (us)

Sinusoidal

Input

Random

Input

512 1940 1934

1024 4268 4221

2048 9413 9248

4096 20147 19927

8192 42732 42618

 Ran on 4C 8T @ 3.8GHz

I repeated each test 1000 times and took an average of the time as well as running random calculations

before hand to load the pc before the FFT’s causing the clock speed to increase as it would in the actual

solution over time this ensured that each test was ran under similar conditions.

From the results you can see that that the tests follow a N Log N relationship between the size of the FFT

and the time taken. And that for such small sizes the transform behaves almost linearly, thus the input layer

size will be purely determined by the neural network complexity especially given a very large N of 8192 takes

just 43ms to run.

However I must also verify that the program can keep up with the live data so must choose a sample size big

enough to process the data without lagging behind. If there is a significant delay between the current sample

and the next sample to be processed by the network I will (depending on CPU load) either skip samples or

start a new thread in parallel to help process the data.

I have determined the time requirements for various sizes of network with differing structures with the use of Alex

Butler’s, NEED support library, the results are as follows:

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Ti
m

e
(u

s)

FFT Size

Sinusoidal

Random

N Log N

Page 56 of 121

It is worth noting that for networks under 1000 nodes the timings are invalidated as system overheads

occupy the majority of the processing time at that point.

As suspected the neural network occupies the majority of time complexity of the solution, with the largest of

which requiring 3641ms to compute while the equivalently large Fourier transform took only 20ms to

compute.

Execution Times for Various Network Configurations

Input

Nodes

Hidden

Layers

Hidden Layer Node

Distribution

Output

Nodes TotalNodeCount Execution Time (ms)

4096 4 3585, 3073, 2049, 1025 1 13829 3641

4096 3 4096, 2000, 1000 1 11193 2921

4096 3 3073, 2049, 1025 1 9219 2266

4096 2 3073, 1025 1 8195 1672

2048 4 2048, 1500, 1200, 200 1 6997 984

2048 4 2561, 3073,1025,513 1 9221 1813

2048 3 1537, 1025, 513 1 5124 563

2048 2 1573, 513 1 4135 437

1024 4 768, 640, 512, 256 1 3201 204

1024 3 768, 512, 256 1 2561 141

1024 2 768, 256 1 2049 109

512 4 385, 322, 258, 130 1 1608 63

512 3 385, 258, 130 1 1286 62

512 2 385, 130 1 1028 47

256 4 193, 161, 129, 65 1 805 31

256 3 193, 129, 65 1 644 32

256 2 193, 65 1 515 31

Tool: NEED Support Library - Alex Butler

y = -3E-13x4 + 8E-09x3 - 3E-05x2 + 0.0986x - 30.867

0

500

1000

1500

2000

2500

3000

3500

4000

0 2000 4000 6000 8000 10000 12000 14000 16000

execution time against Total Node Count

Page 57 of 121

In order to decide the optimum input layer size, I have plotted the time complexity of the FFT against that of

the NN:

You can clearly see that for input layer sizes of 1024 and under the FFT compute time is nearly proportion to

that of the NN, this is a consequence of the NN following an N^4 time complexity which is has a much higher

gradient than N log N so the two data sets quickly diverge.

I have chosen the upper bound of the linear section of the graph to give an input layer size of 1024 as I

previously estimated. I will use the “medium” series to give 3 hidden layers in my network with the following

structure: 1024 input 768 layer 2 512 layer 3 256 layer 2 1 output

The network will feature 1024 inputs, a matrix operation will then be applied, multiplying a 1x1024 matrix

containing the input data by a 1024x750 matrix with 768000 weights that have been adjusted from training

to give an output of size 1 * 768 The random biases from training will then be applied by adding a matrix of

size 1 * 750, then a sigmoid will be applied to each element in the matrix.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
(u

s)

Input Nodes

FFT vs NN Time Complexity

FFT

Big NN

Medium NN

Small NN

 X2

 X3

 X1024

 1

 2

 768

 1

 2

 512

 1

 2

 256

 Out

Page 58 of 121

This process is then repeated by multiplying the 2nd layer (a matrix of size 1 * 768) by a matrix (again

generated from training) of size 768*512 then adding the random biases from training and applying the

sigmoid function to each node.

This is repeated across all layers until the output is reached which will also have the sigmoid applied to it to

give a final probability between 0 and 1, the output will be stored in an array and the decision of the

network will be the average value in this array, I will restrict the size of the array to 5MB (1250000)

The neural network function will take 1024 floating point inputs and retrieve a total of 1283328 floating

point weights and 1518 biases all as floats from storage which will be kept in memory while the program is

running, this will add 5MB of memory requirement to the program and just a 5MB persistent file to store the

model.

The

#define e 2.7182818284590452354

I will define e manually as a double precision float which have 53 bits of precision with an 11 bit exponent

and 1 bit sign, this equates to a maximum of 16 digits of precision, so defining it with 20 will give the

complier enough precision to store it as a double precision float to the highest resolution possible.

Sigmoid(x as float)

 1 / (1 + e^-x)

NeuralNetworkProcess(Input[1024] as float)

 Network[0].Output = Sigmoid(Input * Network[0].Weight + Network[0].Bias)

 Network[1].Output = Sigmoid(Network[0].Output * Network[1].Weight +

 Network[1].Bias)

Network[2].Output = Sigmoid(Network[1].Output * Network[2].Weight +

 Network[2].Bias)

Network[3].Output = Sigmoid(Network[2].Output * Network[3].Weight +

 Network[3].Bias)

This is the key function that implaments the trained weights, by applying multiple matrices to the input array

the nueral network can be executed using the weights and biases carefully generated during training. In each

layer the corresponding weights are applied in a single matrix operation in which every node has an

influence proportional the weight of that nuerone on every node in the next neurone. The bias is then

applied to the product of the input and the first layers weight, which is simply adding a bais to each element

individually. The sigmoid function is then applied to each sum to restrict their domain between 0 and 1.

Page 59 of 121

Main()

 NumberOfClassifications as Long = 0

 Classification[] as float

 While(!Halt)

WaitForInput()

 Classification[0] = NeuralNetworkProcess(Input)

 NumberOfClassifications ++

 Store(Classification)

Here is the main loop which will run in a separate thread to the WinAPI input handler, I will first declare a

variable “NumberOfClassifications” which will be iterated though out execution to keep track of the

number of iterations and therefore can be used to calculate the average classification when the results are

to be displayed. I create a variable size array of floats to store the classification from every iteration of input

processing. I then launch the main loop with the condition of !Halt such that it can easily be quit by

changing the value of Halt when the WM_Destroy message is received.

The loop idles while it waits for the input handler to gather the required 1024 samples then launches the

network with the input and assigns the classification to the next element in the classification array.

The model will be stored in binary with floats stored in adjacent locations through the file. Each float is 4

bytes and will be cast to a floating point integer

Page 60 of 121

Importing the model
The model will be stored in a binary file marked with the file extension .dopms, detection of Parkinson’s

model store, I have chosen a longer extension to as it is as far as my research has shown unused by any

other application.

The model will be stored in the following order, a version number will be stored first. This will take shape as

a floating-point integer allowing version numbers such as 1.1 to be stored. I have chosen to store a version

number as it will help future development distinguish between improved data structures if I decide to

change the current structure in future development consequently I believe the extra 4 bytes of meta data

overhead worth it. Next I will store the number of layers in the network as a 32bit integer, this is an

appropriate data type since there is no application where the network would be larger than 2147483648, I

have left the data type unsigned to ensure that all applications reading the value as a signed or unsigned

integer read the network size. If I stored an unsigned integer the maximum number of layers would increase

to 4294967296, but I don’t think its worth the portability of my code in future, since some languages do not

allow the declaration of unsigned data types. Next I will store a series of integers of equal size (32bit) to

represent the size of each layer starting from the input layer size, through to the output. Since the network

dimensions are no known I can write the 2 dimensional matrix array representing the weights of the first

layer to the file by writing each double precision float in sequence, iterating the x value first then the y value

until the entire array has been stored. I then proceed to the biases for that array and write the single

dimension of double precision floats to the network store. The process of writing weights followed by biases

is repeated until all data is stored.

To retrieve the data the data is read into memory the same as it is stored checking that the read values are

valid along the way, primarily that the version number is recognised, the number of layers is a positive

integer greater than 1 and the dimension of each layer is greater than or equal to 1.

LoadModel(Network)

 BinarayFile = new BinaryFile(“Model.dopms”)

Write(1.0)

 Write(Network.NumberOfLayers)

 For layer = 0 to Network.numberOfLayers

 Write(Output[layer].size)

 End for

 For layer = 0 to Network.NumberOfLayers

 For each YIndex in Network.Weights[layer].y

 For each XIndex in Network.Weights[layer].x
 Write(Network.Weights[layer][YIndex,XIndex])

 End for

 For each YIndex in Network.Biases[layer].y

 Write(Network.Biases[layer][YIndex,0])

 End for

 End for

Since the first output index (0) isn’t actually an output but is in fact the networks input, all the dimensions

can be stored this way.

Page 61 of 121

Network Training
The neural network will be trained with two data sets separated with a file structure, the parkinsonian like

data will be stored in a Parkinsonian like file and normal data will be stored in an another appropriately

named file.

The network will be initially constructed with randomised weights and biases using the standard library

randomise function packaged with default C++. This will populate all 1283328 weights and biases, all weights

will be generated from 1 – 5 and biases from 0.5 to 1.

I will then run every item of data through the network and compute a total error. I can then backpropagate

the error backwards through the network to adjust the weights and biases the code for which will look like

this:

Network Initialisation

GenerateRandomMatrix(Min, Max)

 ThisMatrix as Matrix(MatrixXDimension, MatrixYDimension)
 For Y = 0 to MatrixYDimension - 1

 For X = 0 to MatrixXDimension – 1

 ThisMatrix[X, Y] = Random(Min,Max)

 return ThisMatrix

Generate random matrix will be a method as a member of the matrix class consequently the dimensions of

the network will be known. It iterates through every index of the matrix array through the use of a nestled

for loop, iterating through each Y co-ordinate and then each X co-ordinate in turn, then by setting the value

at this index equal to a random double precision floating point integer that is in the range min to max, where

each is also a double precision floating point integer where min can be negative. Once the nestled for loop is

complete, return the modified matrix.

Initiate network()

 Network[] as Layer

Network.Add(768, 1024)

 Network.Add(512, 768)

 Network.Add(256, 512)

Network.Add(1, 256)

 For each WeightMatrix in Network.Weights

 WeightMatrix.GenerateRandomMatrix(-1,1)

 End for
For each BiasMatrix in Network.Biases

 BiasMatrix.GenerateRandomMatrix(-0.5,0.5)

 End for

The above pseudocode initiates a network as a series of layers, adding each dimension in turn by appending

a weights matrix and bias matrix of size 768,1024 and 768 respectively. And then iterating through each

weight matrix in the network and bias matrix in the network. The initiated values will be adjusted for optimal

training times in the final solution, but I believe these values will be appropriate for the chosen network size.

Page 62 of 121

Backpropagation

ErrorFunction(Classification, Target)

 Return 0.5(Cassification – Target)^2

ErrorDifferential(Classification, Target)

 Return Classification – Target

SigmoidDifferential(X)
 (e^(-x)) / (e^(-x) + 1)^2

Declare global functions that will be used throughout training and define the characteristics of the network.

• The “Error Function” method will be used to calculate the mean squared error of the output of the

network

• The “Error Differential” method executes the differential of the desired error function, in my case

the differential of the mean squared error, it will be used during backpropagation to calculate the

error signal in the last layer

• The “Sigmoid Differential” method applies the derivative of the sigmoid function to the given

parameter, which is used to backpropagate the error signal through the network

CalculateErrorSignals(Target)

 For each index in Outputs[FinalLayer]

 ErrorSignal = ErrorDifferential(Outputs[FinalLayer][index], Target[index])

 End For

 For each layer in network.LayerCount step – 1

 ErrorSignal[layer] =

MatrixMultiply(Weights[layer + 1], ErrorSig[layer + 1]);

 End for

Calculate error signals takes the matrix of target values and backpropagates the error at each output back

through the network. The first loop iterates through each output node and calculates the error differential

given the outputted value and the target.

The next loop steps back through the network multiplying each weights matrix by the error signal for that

layer and setting the result equal to the error signal for the previous layer

UpdateWeights(LearningRate)
 For each ErrorMatrix in ErrorSignals

 ErrorMatrix = Scale(ErrorSignals, LearningRate)

 End for

 For Each layer in network

 Gradient[layer] = SigmoidDifferential(Output[layer])

 Weights[layer] += MatrixMultiply(Gradient,Outputs[layer].transpose())
 End for

Update Weights scales the error matrix by the learning rate to reduce the size of the change to the weights.

Then iterate through each layer calculating the sigmoid differential for each output then multiplying the

obtained gradient by the transpose of the error signal.

UpdateBiases(LearningRate)

 For Each layer in network

 Biases[layer] += Gradient[layer]

 End for

Standard result that the gradient of the biases is equal to the gradient of each output, so add the scaled

gradient of each output to each bias.

Page 63 of 121

BackProp(Target, LearningRate)

 CalculateErrorSignals(Target)

 UpdateWeights(LearningRate)

 UpdateBiases(LearningRate)

Applies the backpropagation functions defined earlier in sequence.

Page 64 of 121

TrainNetwork()

ParkinsonianLikeData[SizeOfDataSet/2] =

 LoadMouseDate(“Solution\ParkisoninanLikeData”)

NormalData[SizeOfDataSet/2] = LoadMouseDate(“Solution\NormalData”)

Error = 1

Iterations = 0

While(Error > 0.01 or iterations < 10000)

 For each Log in TrainingData
 Error = 0

 //Train on normal data with target 0

 Network = TrainingNeuralNetworkProcess(NormalData[RandIndex()])

 Error += ErrorFunction(Network.Output, 0)

 BackProp(Network, 0)

 Iterations ++

 //Train on Parkinsoninal Data

 Network = TrainingNeuralNetworkProcess(NormalData[RandIndex()])

 Error += ErrorFunction(Network.Output, 1)

 BackProp(Network, 1)

 Iterations ++

 Error = Error/2

 End for

The train network method serves to train the network on all the data it has available to it, with each class of differing

target stored in a different structure. In my case that gives two structures, a target and a normal data array. I then

initialise two variables, Error and Iterations, error will accumulate the error over time, in the final solution this will be

an average across a few thousand iterations to prevent the randomness of the data giving a low error values

anomalously. While the error is greater than our target the method then loops through every log available, first on

normal data then on target data, this prevents the network developing a bias since it has been trained on each data

type an equal amount. If the number of training iterations on normal data outweighed that on target data the

network would be more likely to classify data as normal. In each of these trains, the inputs to the network are set

equal to the Normal/Target data and the network is ran. Then the error is calculated for monitoring. Finally

backpropagation is used given the target to adjust the weights of the network according to an internally defined

learning rate for the network size in use. The cycle is then repeated until the target error is achieved

It Is worth noting that all training data will be normalised before training.

Page 65 of 121

Main Procedure
LogArray = LoadLogs(LogPath)

RandomiseLogOrder(SampleArray)

SampleArray = ReadSamples(LogArray)

Format(SampleArray)
{ParkinsonianSamples, NullSamples}SpiltInToClasses(SampleArray)

AddParkinsonianTransformations(ParkinsonianSamples)

{ReserveParkinsonianLogs, ReserveNullLogs }

= Reserve({ParkinsonianSamples, NullSamples}, 0.25)

Iterations ++

Loop Until (Accuracy > 80){
 if Random(0-1)

 TrainingSamples = RandomSequentialSamples(ParkinsonianSamples,2048)

 Class = 1

 else

 TrainingSamples = RandomSequentialSamples(NullSamples,2048)

 Class = 0
 FFT[1024] = FastFourierTransform(TrainingSamples)

 Train(FFT, Class, 0.1)

 if NOT(Iterations mod 200)

 Accuarcy = TestModel({ReserveParkinsonianLogs, ReserveNullLogs })

 Iterations ++

}
StoreModel(OutputPath)

First I will import a selection of logs from secondary storage, I will then randomise their order to help

prevent any bias if any sequential logs are from the same person. Next the logged data is read into memory

resulting in a 2D array of samples, the first-dimension indexing that the contained array originated from the

same log file and consequently the same user. The second dimension will be an array of sample structures.

Next, I format the sample array, this encompasses patching any short pauses filling in the gaps with extra

samples that fit with the data, this is due to Fourier transforms being susceptible to sharp amplitude changes

and require equal sampling intervals. Then I will split the samples into two classes of equal size, one for

Parkinsonian data another for “Null” data – data that has not been transformed to show symptoms of

Parkinson’s. Then we apply the transformations mentioned above, adding a random sine wave of 4.5-6.5hz

with a random offset and small randomised amplitude. We then enter the main training loop which will

continue until the model is sufficiently accurate

Page 66 of 121

Class diagram for network

Notes: The Network array is indexed from 1 to 4 with the 0th index being solely for storing the input to the

network, this makes the code much simpler for backpropagation.

The CPU and GPU mathematical functions are very similar with the exception how transposes are handled, I

will not define a explicit transpose function for the GPU as it’s purely a memory operation which can be

imitated by changing how indexing is handled.

Network

Matrix Weights[]

Matrix Biases[]

Matrix Gradients[]
Matrix ErrorSignal[]

Double Error

Int NumberOfLayers

Setup()

RandomiseWeightsAndBias()

NeuralNetworkProcess()
CalculateErrorSignals()

UpdateWeights()

UpdateBias()

Backprop()

Matrix

Double Array[]

Integer x

Integer y

Integer size
New(X,Y)

Int Index(Y,X)

Matrix Transpose()

Double GetIndex(X,Y)

RandomlyFill(Min,Max)

Fill(X)
Display()

CPU

Multiply(A,B)

Transpose(A)

Scale(A, B)

Add(A,B)

Add Constant(A,B)

Sigmoid(A)

Matrix Mathematics

GPU

Multiply(A,B)

Multiply Transpose(A,B)

Scale(A, B)

Add(A,B)

Add Constant(A,B)

Sigmoid(A)

Page 67 of 121

Data dictionary up to training phase

Data Dictionary

Name Data Type Regex Occurrence Source of data / description

XCoord

Long

[0|1]{32}

WinAPI input handler

Horizontal mouse movement

YCoord Vertical mouse movement

Time UINT64 [0|1]{64} System Clock

Biases

Matrix[]

[0|1]{64}* Trainer

Stores the biases per layer

Weights Stores the weights for each layer

Gradients Gradients of outputs of each layer

Error Signal Error signal at each output

Error Double
Total error of the network at the

last training iteration

Number Of Layers integer
Stores the total number of layers in

the network

Log retrieval
I also intend for the program to be able to perform a “Deep” file search for relivant log files. Such that logs

stored on the FTP file server can be used for training irrespective of their

Page 68 of 121

Live detection
In this, the third and final section of my investigation I will be processing live data to classify the user using

the trained neural network created and stored earlier using the collected mouse logs from the first part of

the solution. I will display the result using a live graph that updates with each new classification which can

be resized for easier viewing if the user is elderly, the graph will use an OpenGL backend to ensure maximum

performance on the given hardware. The graph will be accessed through a similar interface to that used in

the first section of my project, accessed by right clicking on the applications system tray icon. I also intend to

add an option to simulate parkinsonian behaviour on the inputted data to give a comparison to use in my

testing.

The system tray menu will look as follows:

• When the user selects “Enable Auto-start” the same procedure will be carried out as that in the mouse client

described at the start of my design, where the start-up registry is edited and the label is switched to “Disable

auto-start”.

• Show stats will show an OpenGL graph displaying the classifications that have been stored in a queue. The

graph window will be of size 300 wide 200 high and will be shown in the bottom right hand side of the

screen, the resulting window will plot the classification from 0 to 1 against the number of compounded

classifications, I have decided to display 100 classifications as a typical mouse sampling frequency is 125Hz,

for 2048 samples to be collected a period of 16.4 seconds will have passed, so displaying 100 classifications

does not seem too extreme an will take 26.7 minutes of use to fully fill, since the average usage time of a pc

is 130 minutes each day as of 2018 (statista, 2019). But 100 classifications will result a full looking graph with

smoothed data due to its compounding over time. Due to the concerned variables being the classification

and time at which that classification was made, the window will be aptly named “Classification Time Graph”.

The window will use the default windows 10 format with the minimise, maximise and close buttons on in the

top right-hand corner.

Enable Auto-start

Show stats

Simulate Parkinson’s

Exit

1.0

0.8

0.6

0.4

0.2

0.0

100 80 60 40 20 0

X Classification time graph

Page 69 of 121

• Simulate Parkinson’s will result in the superimposition of parkinsonian-like characteristics as described in my

training section, this will cause the classification of the network to tend towards classifying the user closer to

one, meaning they are more likely to have Parkinson’s, due to them showing parkinsonian characteristics.

On clicking the icon the label of the menu item will switch to “Stop Simulation” making it easy for the user to

disable the feature. I don’t think it necessary to have any other indication of the simulation as the user will

have to look at the menu before displaying the result. The resulting graph given similar input data will look

as follows (if a user had Parkinson’s and used the live detection software the result would be similar).

The live detection component of the program will work very similarly to the mouse client; however it will not have

any file logging capabilities nor log upload capabilities. Instead will construct a neural network using a detection of

Parkinson’s model store file (.dopms). which is later used in the main message loop to process an array of the last

2048 recorded samples after being passed through a Fourier transform reducing the input layer size to 1024 nodes.

Once the neural network has processed the data using its imported weights and biases the application will calculate

the average across the previous classifications and add the new average to a circular queue for graphical display.

Furthermore another window thread will be initialised when the “Show stats” label is chosen which will display an

OpenGL graphics canvas to which I will draw a graph using a graphing class utilizing SFML’s primitive types such as

line drawing and text. A message will be set to the graphing window when new data is added to the queue and the

graph will be re-drawn.

If the simulate Parkinson label has been selected a flag will be set which will checked before classification,

parkinsonian behaviour will be simulated accordingly.

The pseudocode implementation of the above is as follows for the message loop:

1.0

0.8

0.6

0.4

0.2

0.0

100 80 60 40 20 0

X Classification time graph

Page 70 of 121

Samples[2048] as Sample

SampleIndex = 0

MouseMoveEvent(){

 If(Not LogFlag){

 Samples[SampleIndex].XDelta = GetMouseX()

 Samples[SampleIndex].XDelta = GetMouseY()

 Samples[SampleIndex].Time = GetTime()
 Samples[SampleIndex].TimeDelta = Samples[SampleIndex].Time -Samples[SampleIndex-1].Time

 Samples[SampleIndex].X = Samples[SampleIndex-1].X + Samples[SampleIndex].XDelta

 Samples[SampleIndex].Y = Samples[SampleIndex-1].Y + Samples[SampleIndex].YDelta

 PreviousTime = TimeNow

 SampleIndex++

 If(Upload and N >= 2048){

 NormalisedSamples = Normalise(Samples)

 If(SimulateParkinsons){

 NormalisedSamples = AddParkinsonianBehaivour(NormalisedSamples)

 }

 FFTOuput = FFT(NormalisedSamples)

 NueralNetwork.Proccess(FFTOutput)

 Classification = NueralNetwork.Output

 AverageClassification.Add(NueralNetwork.Output)

 GraphQueue.Add(Classification)

 SendMessage(GraphWindow, UpdateGraph)

 }
 }

}

And as follows for the graphing window process:

DrawGraph(){

 GraphLine = GraphQueue;

 Window.clear()

 Window.Draw(Grid)

 Window.Draw(XAxisText)

 Window.Draw(YAxisText)

 Window.Draw(GraphLine)

 Window.Refresh()

}

OnCreate(){

 WindowXPos = ScreenSize.x-300

 WindowYPos = ScreenSize.y-200-TaskBar.Height
 Window = CreateNewWindow(WindowXPos, WindowYPos)

 Window += new SFMLCanvas

 DrawGraph()

OnResize(X,Y){

WindowXPos = ScreenSize.x-X

 WindowYPos = ScreenSize.y-Y-TaskBar.Height
 Window = CreateNewWindow(WindowXPos, WindowYPos)

 Window += new SFMLCanvas

 DrawGraph()

}

Page 71 of 121

Tests
I plan to conduct the following tests on my solution to verify functionality. Each set of tests will be split into 3

component sets:

• Mouse Client

• Training

• Live detection

 I will first conduct black box tests to check the no errors occur/no errors are handled incorrectly from user

operation.

Black box tests
Mouse Client

Test
ID

Name Description Expected

BM1 Log creation Verify that on starting the application a Sample log
file is created in the expected folder that does not
conflict with any other log files in that folder

If Log1.dopbf exists
will create
Log2.dopbf…

BM2 Set automatic
start-up

Check that a key is created in the registry at
Software\Microsoft\Windows\CurrentVersion\Run

with the same path as the executable and id
“MouseClient” or similar

Key created, if one
already exists do
nothing

BM3 Configuration
file is read

Edit the contents adding/removing password/user
fields, checking that authentication is
enabled/disabled accordingly. Also check that the
URL is validated checking if it is present or not

Authentication
disabled if
user/pass fields not
filled, likewise with
URL

BM4 System tray
icon

System tray icon appears on program start-up with
the correct icon displayed. A menu is shown when
the user right clicks on the icon and the icon is
deleted on exiting the program

Icon created, menu
displayed, icon
deleted on exit

BM5 Export logs Verify that upon selecting the upload logs label in
the system tray menu, all relevant logs are exported
to a CSV file. Achieved by starting the program,
moving the mouse to the right-hand side of the
screen from the left, drawing a graph in Excel using
the exported logs and checking a straight line is
formed

Log.csv file is
created on export
csv logs. Read CSV,
generate graph
verify a straight line
to the right

BM6 FTP Upload Check that if a valid FTP server is described in the
configuration, log files are periodically uploaded of
similar length with varying filenames. Achieved by
starting an FTP server, creating a configuration with
the corresponding details, running the client and
moving the mouse for a period of time.

Log uploaded to
FTP server

BM7 Log resolution Check the resolution of the screen as this is the
resolution windows converts the mouse to, then
move the mouse from one extreme of the screen to
the other with a known change in pixels, the
recorded change in the raw co-ordinates should be
greater than that dimension in pixels. Using the
export to CSV function to demonstrate.

travel of known
pixels to have
greater change in
log

BM8 Sample rate Again, using the export to CSV function. Move the
mouse rapidly for 20 seconds then export the result,
if 100 samples take longer than 8.33 seconds
(100/12) to be collected the test is a failure.

Time delta across
100 samples less
than 8.33 seconds

Page 72 of 121

BM9 New mouse Start logging, without moving the old mouse,
connect a new mouse to the device move the
mouse for 10 seconds and export the logs, all using
the same new mouse. If the logs show 10 seconds of
data pass.

Logs from new
mouse devices

BM10 No mouse Start logging, disconnect all mouse devices,
reconnect the mouse, export the logs and check for
erroneous data.

Doesn’t crash when
mice disconnected

BM11 Binary file Create a small sample log by briefly moving the
mouse while logging, then open the log with a
binary editor to verify, 2 longs followed by a 64-bit
integer

Binary file clearly
shows mouse logs

BM12 Resources Run the logger with a performance profiler open,
check the memory usage for the mouse client
process is under 500mb as well as CPU usage under
10%

Doesn’t use more
than 500mb of ram,
less then 10% CPU

BM13 Compare FTP Log samples until they are uploaded to the FTP
server, once the file has been uploaded, stop
logging, export both and compare the readings

Files sent to FTP
server are the same
as those on device

Page 73 of 121

Training

Test ID Name Description Expected

BT1 Select Log folder When the program is first started a dialogue
appears requesting the user to select a folder using
windows file explorer

On start select
directory
dialogue shown

BT2 Exit log folder
(forcefully and
through close
method)

If the user quits the file explorer by force quitting
(pressing the cross/halting in task manager) or by
closing the dialogue the program exits

Dialogue closes
and program
halts

BT3 Train existing - Yes When the program is started a message is displayed
to the console to check if the user would like to
train an existing model, if the user types yes, with
any combination of capitalisation, a file open
dialogue should be displayed. The program should
check on selection that the file is valid, so both valid
and invalid files will be selected.

Dialogue
produced if yes
is given

BT4 File importing normal Model file import is successful given a valid dopms No error
message is
given, training
commences

BT5 File importing
erroneous

When a valid file is selected, it is successfully
imported and the size of the resulting network is
verified to be correct. To test this, I will edit the
.dopms file with a binary editor to change the
characteristics of the file

Error message if
the file is invalid

BT6 Train existing - No A random network should be generated, this will be
tested later in a white box test, otherwise the
program continues and trains a randomised
network

Program
continues

BT11 Erroneous user input Program does not crash when a null input is given,
or if a invalid input is given, instead the user is
requested to try again

Requested to
retry

BT7 Train existing
erroneous model
store

Program does not crash when a model store of
incorrect dimensions is selected, or when an
incorrect file type is attempted to be imported

Requested to
retry

BT8 Run time Verify through a train overnight that the program
can run autonomously without crashing

Convergent
network

BT10 Log corruption If a sample log is renamed/corrupted/deleted
during training, the log is discarded and training
continues

Renaming logs
doesn’t crash
training

BT12 Training random
network

Initialise a network with random weights and train it
with random data, showing the network gradually
converging over time

Accuracy
improves over
time, able to
classify new
data
successfully

BT13 Accuracy test Test network that has been trained for as long as
possible on as much data as possible, measuring the
performance calculating the percentage of
successful classifications

Correct
classification of
75% of classes

Page 74 of 121

Live detection

Test ID Name Description Expected

BL1 Default model
imported

Application checks for default model store named
“DOPModel.dopms. If it exists model is imported
without showing error

Model imported
program
continues

BL2 Default model doesn’t
exist

Rename or delete default model store, verify that a
open file dialogue appears to pick the replacement

Open file
dialogue shown

BL3 Set automatic start-up Check that a key is created in the registry at
Software\Microsoft\Windows\CurrentVersion\Run

with the same path as the executable and id
“LiveDetection” or similar

Key created, if
one already
exists do
nothing

BL4 System tray icon System tray icon appears on program start-up with
the correct icon displayed. A menu is shown when
the user right clicks on the icon and the icon is
deleted on exiting the program

Icon created,
menu displayed,
icon deleted on
exit

BL5 Show Stats When show stats is selected a graph is displayed in
the bottom right corner of the screen

Graph appears

BL6 Resize and close Graph window can be resized, closed and re-opened
without affecting the collection of classifications

Graph can be
resized and
closed

BL7 Classification Use the application for 10 minutes and verify that
the classification is 0, ie I don’t have Parkinson’s

Graph displays a
line near 0

BL8 Enable simulation Verify that when the simulation is enabled, the
majority of classifications tend to 1 after 10 minutes
of usage

Graph displays a
line near 1

BL9 Physical simulation Input mouse data at a frequency of 4-6Hz and
demonstrate an increase in classification

Line grows
closer to 1 with
vibrations

BL10 At least (5-6)*2hz
sample rate

Time the time for a new classification to be added
to graph, divide this by 2048

BL11 Resource Start logging mouse data and while running, open
task manager to verify that the Live detection
application is using no more than 10% of the CPU
and no more than 500MB of RAM

Uses less than
10% CPU
500MB RAM

BL12 Paint tracking While logging and plotting is being displayed draw
concentric circles in Microsoft paint ensuring
smooth mouse movement, if any lines appear
jagged especially when a neural network is
processed if there are comparatively more artefacts
it would suggest the application is affecting mouse
tracking.

Paint tracks the
same
with/without
logging

Page 75 of 121

White box tests
Mouse Client

Test ID Name Description Expected

WM1 Config import Import valid and invalid config files, checking
relevant variables during runtime, ensuring the URL
given in the file is read correctly as are the
authentication details

URL variable
stores valid url,
as does
password and
username, given
authentication

WM2 Menu messages Step through switch statement for system tray icon
right click and verify that the correct functions are
ran exclusively when the corresponding label is
chosen

All message id’s
match their
expected ID

Training

Test ID Name Description Expected

WT1 Fourier transform Create sine wave of frequency 5hz and verify a spike
at 5 of the output. Achieved by adding a code
snippet and logging the result to the console.
Repeat for superimposed 7Hz + 90Hz + 450Hz

Spike at index 5,
spike at indexes
7,90 and 450

WT2 Logs Change log path to one with repeated file names in
various directories, files with differing extensions
and a known number of valid files.

Same number of
files detected,
all file paths are
correct

WT3 Matrices multiply Test small matrix operations on the CPU and verify
using online tools, then verify for GPU and larger
matrices. Achieved with the use of
http://www.bluebit.gr/matrix-
calculator/matrix_multiplication.aspx
And randomly filling matrices

GPU product
same as CPU
and online

WT4 Small network train Create a small network of topology 2,4,4,1 and train
with xor gate input data, run in diagnostic mode and
verify that relevant weights are
increasing/decreasing

Weights change
as expected,
error decreases

WT5 Fourier Transform
Iterations

Create an iterator before starting the Fourier
transform method, and for each operation iterate
its value and read the total for various sizes

N log n
iterations

Live detection

Test ID Name Description Expected

WL1 Graph Trace a number of classifications from sample
collection to plotting

NN output is
expected, as
shown on graph

WL2 Parkinson’s simulation Plot normalised data against the same normalised
data with parkinsonian characteristics simulated

Normal graph is
smooth,
simulated graph
undulates with
sharp peaks

WL3 Watch mouse refresh
rate

Place a watch (using visual studio) on the interval
variable when live data is prepared and verify that
this interval is within 33% the documented sample
rate interval of the mouse analysed 33% Is chosen
as this is the percentage of the range of frequencies
to detect

Equal to roughly
the refresh rate
of the mouse in
use

http://www.bluebit.gr/matrix-calculator/matrix_multiplication.aspx
http://www.bluebit.gr/matrix-calculator/matrix_multiplication.aspx

Page 76 of 121

Technical solution
Overview

My technical solution is composed of three parts that are run to completion in sequence.

The first part of the solution is the Mouse Client this is a client that autonomously collects mouse data and

uploads it to a web server for storage.

The second part of the solution is the Trainer it takes all collected mouse data and constructs a neural

network to recognise mouse data showing the symptoms of Parkinson’s.

Finally, is Live detection this is another client that runs on a user’s machine collecting mouse data and using

it to classify them on a spectrum of parkinsonian behaviour.

A more detailed look

Mouse client

Sets up auto starting with windows, registers mouse devices for logging, creates a window to read messages,

dispatches mouse movement messages, storing and uploading them incrementally to a server.

Configurable with a config file and controlled with a system tray context menu.

Training

Deep searches for log files within a given directory, based on user decision creates a new random network or

imports one from a model store binary file. Create 1000 classes using mouse data, 500 showing no signs of

Parkinson’s, 500 showing parkinsonian like behaviour apply normalisation and pass through Fourier

transform in preparation for training. Choose a random starting point in the array of “Null” (non-

parkinsonian) and “Target” (Parkinsonian like) data. Iterate through training data alternating between null

and target data. Adjust weights after running a forward pass with the input data and back-propagating any

errors. With the ability to do so on the CPU or GPU, this section has been targeted for the GPU as it offers

greater performance, reducing lengthy training times.

Give a status report testing on the training data every 100 iterations.

Backup the model every 100 iterations

Every iteration check for user input with the key combination Ctrl + Shift + O signalling the user wishing to

export the current model.

After each iteration push a new class to the queue of classes popping the last one from the queue,

alternating the added class between null and target.

Live detection

A client that runs like the mouse client collecting mouse logs in the same way, but uses a trained neural

network imported from a default file (if the default file cannot be found the user is prompted to locate a

model store) to classify the user every 2048 mouse samples using the output of the neural network after the

input has been normalised and passed through a Fourier transform. When the user wishes the results are

plotted on an OpenGL graph, made from primitive types (lines and text), that can be resized for easier

viewing.

Note: all text in bold is a reference to the code dump, the path given in bold represents the structure of

headings and titles that the code can be located in.

Page 77 of 121

Mouse client
The mouse client does not differ to my design by a large extent, I added a hide menu option to the system

tray menu as there was no message signalling the user clicking off the menu so this was the easiest solution

to allow the user to cancel picking an option. You can see the setup for the menu in Mouse client/Main in

the Win Main function (the entry point for the program).

Normal operation
Under normal operation the program begins logging mouse data and displays a system tray icon with a

corresponding context menu.

This is the context menu shown to the user when they right click on the system

tray icon, it lists all the options available to the user. There is very little user

interface for the program as the intention is for the program to run in the back-

ground without the user having to be aware of it at all times. All other output is

through message boxes like shown bellow or though renaming the system tray

icon (shown later).

Here is an example of a standard message box, the

example shown is displayed when there isn’t any

authentication details in the configuration file, the

configuration file to give this output is:

Output is displayed through the system tray icon when logs are being exported to update the user with the

progress of the export. An example of this export is shown below:

 I have structured the code with 3 main functions, they are:

• WndProc: this is the call back that’s passed whenever a message is received and is a default

definition for windows 32. I declare the function before instantiating it as it is referenced in

CreateWinAPIWindow (discussed later) since the WndProc also calls CreateWinAPIWindow so one of

the functions had to be defined before instantiated. It simply switches between each case of

message I have chosen to respond to.

• Create win API window: Registers a window class and creates a widow at the default location

• Win main: Sets up the main program class, MyWMInput (this is described later). Creates the main

message window followed by closing the widnow to hide it from the user, register mouse devices to

the new window. Setup the system tray menu and its icon, the icon is loaded from the

"SystemTrayIcon.ico" file in the executables directory. Followed by processing messages until the

program exits.

Page 78 of 121

Mouse client class
To store variables across each function I declare a global class which encapsulates the methods and

properties I need in the message loop since I cannot directly pass the function to the loop as a

parameter. Referencing Mouse Client/Lib, this stores the time deltas for sample logging, the structures

required for the retrieval of mouse data, the binary to csv converter and the array of menu items, all of

which must be configured in the main loop but used in the message loop.

When the application is called the setup function for this class is called. This is the method that

configures all the properties of the class finding the path to the application and configuring auto starting,

reading the configuration file for the FTP server authentication information, setting up the first sample

log and recording the time.

This class also holds the method that is called when a WM_INPUT message is received, you can see that

in the WMInputHandler I retrieve the mouse data by requesting mouse data from the operating system

using the handle referenced by the lParam of the message and cast this structure to the RAWINPUT

structure which gives me access to the last x and y deltas. I also retrieve the time then write a sample to

the log.

Next, I check if uploading is enabled, if so I check the number of message iterations, if this is greater than

or equal to 8192 (8*2048) I attempt to upload the sample log to the server referenced by the

configuration file.

Sample logging
Sample logging is handled by my binary storage class it has 3 methods, the first is an open file method,

this is filled with error checking as there could be a number of errors that occur when opening a file, the

chief among which is the application having insufficient permissions to write to the file. To check for

these issues, I look for a change in the last system error when creating the logging directory (if the

directory already exists nothing will happen) then when opening the recording info file.

The recording info file is a simple text file in the recordings folder which stores the number of recordings

allowing the application to increment a file ID according to the number of logs in the folder, this helps

prevent overwriting a sample log. To ensure that I don’t overwrite a sample log, before opening the log I

check if the file exists, if it does, I increment the file id and try again, if the file exists the stat while be 0.

Before opening the file, I also write the file id to the recording’s information file for later reference.

Finally, I open the log and check if the log is actually open, if not return an error.

The next method is Close File, this simply closes which ever log file is currently open.

Finally is write sample, this method takes the three arguments that are the data I wish to log to the file,

being the X and Y coordinate deltas and the corresponding change in the time stamp.

Then I simply write them to the log with their defined lengths (4 bytes for a long, 8 for a 64bit). The data

types are implicitly converted to characters as this is the only data type that the standard libraries file

streamer can handle but means each variable must be treated as an array of 4 or 8 bytes and written

byte by byte to the file.

Binary to CSV
This is the method used to export logs to excel, its main method takes a pointer to the storage class

currently in use. The reference to which is used to close the current log file and determine where logs are

stored. If a log is currently in use I set a flag and store its current write pointer such that writing can be

continued without impairment afterwards.

I then create a new file to store the CSV excel data requesting the user for the path in the process (as long as

the path given by the user wasn’t null), using a “Get save path” defined earlier.

Before opening the file I ensure the path ends in .csv.

 Once a valid CSV file is open I then open the logs using the same recursive log searcher used during training,

I have described this later in training – log importing. This function simply finds all log files and writes their

paths to an array and returns the number of files in that array. I then loop through each path in the array

Page 79 of 121

and open the log. I calculate the number of samples in the log and read each sample followed by writing it to

the CSV file, I also give a status update by changing the name of the system tray icon as logs are exported.

Once all logs have been exported to the CSV file I close the file and check if there was a binary file being

written to previously, if so I re-open that file and reset its pointer to its previous value. I also reset the

system tray icon name to mouse client.

Configuration manager
Referencing Mouse client / configuration manager

The configuration manager serves to retrieve the server configuration and control how and when files are

uploaded to the ftp server. When the application starts the password, username and URL of the server are

imported as described in my design, if the application cannot locate the configuration file the user will be

requested for the path which will be set using the set config file function. Finally when a file is uploaded the

upload file over ftp function is called. This functions by calling a precompiled “FTP_EXEC.exe” program which

takes an array of strings being the username, password and URL of the server, the program is documented

later. I attempt to upload the server 5 times before disabling uploading.

FTP Upload executable
Since delving into the C++ socket library was out of scope of my project, I decided to use Microsoft’s .NET

framework to upload files to an FTP server.

Referencing Mouse Client / FTP executable

This is a simple script using standard code from MSDN to upload files to an FTP server. The main function

takes an array of strings from the command line as arguments (when it is called in my project using WinExec

it can be likened to creating a virtual console) if there are 2 arguments given for example “SampleLog.dopbf

ftp://DOPFTPServer.com” the second is assumed to be the URL of the FTP server which does not have

authentication so the file will be uploaded without authentication. If there are 4 arguments for example

“SampleLog.dopbf ftp://DOPFTPServer.com admin password” it is assumed the file is to be uploaded with

authentication and the program acts accordingly.

ftp://dopftpserver.com/
ftp://dopftpserver.com/

Page 80 of 121

Training
Training the network is carried out through a console which loads logs from a directory and training an

existing or new network, iterating through each log to provide data to train with, simulating parkinsonian

behaviour every other iteration to train the network to recognise it. Every 100 training iterations through

every training class in the queue (100000 backpropagations on single classes) the output and the target

output for every class is printed to the console.

Data Preparation

Fourier Transform

Referencing Training/FFT

The FFT function is implemented in its own header, it contains the “Split odd index’s” function, the main

“Fast Fouierer Transform” function and a utility function: “AddSine”.

I first declare Pi to an extreme number of decimal places, all references to Pi in the main function will take

this value. It has been defined with the “#define” statement so it is a global constant availible for the

compler to replace with the given value in every reference.

The Fast Fourier transform is a recursive function with a base case when the size of the given array is less

than two. In the normal case the first call is to “SplitOddIndexes”.

The split odd indexes function, as the name suggests, splits all the odd indexed elements in the array such

that even index’s are in the first half of ComplexArray and all even are in the second half of the array. This is

achieved by creating a temporary array for the odd indexes, named “Temporary Odd Buffer” it is a pointer to

an array of complex numbers. The memory for which is allocated with the malloc function, the malloc

function allocates a number of bytes in series in memory, and returns a void pointer. To calculate the size of

the allocation required, I multiply the desired size of the array (Half the size of the input array) by the size of

a single complex double precision float structure. Since the function returns a void memory address pointer I

reinterpret its value as a complex double pointer to store it in the Temporary Odd Buffer variable. Now I

have a suitable array, I copy each odd index from the input array to the temporary array, using a for loop

with half size iterations. I then using another for loop with half size iterations, shift all the even indexed

values to the first half of the array. Next I copy from the temporary buffer to the second half of the input

array. Thus the input array now has even indexed items in the first n/2 indexes, and previously odd indexed

times in the second n/2 indexes.

Finally the pointer to the “Temporary Odd Buffer” array is freed and the memory for that allocation is freed.

After splitting the indexes, the recursive call is made, Fast fouier transform is called for the first half of the

split array, and then for the second. This in turn triggers a stack of calls each processing the first half of their

given input until the input size is less than two. Once the base case of every lowest level recursion has been

reached the function then beigns to work its way back out of the stack. As each call exits it loops though the

first half of the given array where each iteration has index “k”, in each iteration adding (cos(2𝑘𝜋) +

𝑖𝑠𝑖𝑛(−2𝑘𝜋)) ∗ 𝑘𝑡ℎ 𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 to that kth element then subtract ((cos(2𝑘𝜋) + 𝑖𝑠𝑖𝑛(−2𝑘𝜋)) ∗

𝑘𝑡ℎ 𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡) from that odd indexed element each for the kth element up to that call of the

FFT. Then the function exits that layer of recursion stepping up to the next layer of recursion.

For early testing, I the generate 2 pure sine waves of frequencies 5 and 10Hz and superpose them, then

input them into the FFT function and print the contents of the array to the console so I can copy them to an

excel spreadsheet for viewing. The results of which are shown below.

Page 81 of 121

Page 82 of 121

Matrix Library
Class

Referencing the code dump Training/Matrix Class:CPUMatrix you can see the class encapsulating the

structures and methods used for storing a matrix on the processor. The key properties are its dimensions

and the array of double precision floats, the x and y sizes must be stored as they define the matrix

dimensions, I have used the “size_t” type to store these dimensions allowing the program to decide at

runtime which variable size to instantiate for maximum efficiency. Size is stored to reduce the number of

calculations during training as, although it can be computed easily as the product of the x and y dimensions,

the number of element wise operations conducted during training that only care about the size of the array

and therefore the size of the matrix, warrants the extra storage rather than having to retrieve 2 properties

and compute their product. I could access the same value through the vector size method but this is a

member function of the vector subclass so will take longer to access.

I chose a singular dimensional array to store the network in due to the classes transpose ability, in which the

x and y dimensions swap, if the array was 2 dimensional it would have to be redeclared with new fist and

second dimension sizes increasing the processing time to compute the transpose.

Page 83 of 121

Main functions
Referencing the code dump Training/Matrix: Matrix maths namespace there are a number of functions

used during training.

CPU Multiplication

The single most used method in the project, matrix multiplication

multiplies two matrices and stores the result in a new matrix. Given

two matrices of size R1 by C1 and R2 by C2 the method will

produce an output matrix of size R1 by C2 however due to the

manner in which matrices are multiplied, see the GIF (right), the

columns C1 and rows R2 dimensions must be equal. You may think

of a matrix multiplication as the mapping of one matrix onto

another with the rotation of the second 90 degrees left then

performing the dot product of each combination of rows.

Throughout this explanation I refer to the x and y members of each input matrix class A and B as R and C as

members of matrices 1 and 2, as this matches the notation used for the iterators in the for loops.

Before execution I check that the R1 and C2 dimensions of the input matrices are not different, otherwise I

throw an error.

I then construct a new return variable C the product matrix into which the result of the multiplication will be

stored. Consequently the dimensions of this return matrix are equal to the number of rows in matrix, A,

followed by the number of columns in the second matrix, B.

The method achieves the multiplication through the use of 2 nested for loops within a main loop that

iterates through each row of the first matrix: R1, in this case that’s thrice.

It then iterates through each column C2 of the second matrix, in this case that’s twice:

Finally we iterate through each column of the first matrix C1 or if you prefer each row of the second matrix

R2, since these dimensions will be equal, in this case that’s 3 iterations

We then multiply these two elements and store them in the product matrix at index R1, C2 in this case 0,0.

Note this means that all multiplications carried out in within the same iteration of the second loop, will be

added to the same index of the product matrix.

Due to the appendage of values to each index of the product matrix, it is critical that the product matrix

contains only 0’s. Accordingly I fill the product matrix with 0’s before performing the operations.

I have chosen to use the size_t variable to store the dimensions to allow for the executing machine to decide

on the most efficient integer size to use.

Page 84 of 121

Transpose multiplication

The CPU transpose methods: “CPU Multiply A”, “CPU Multiply B”, “CPU Multiply AB” in the matrix maths

namespace serve to transpose a given parameter A, B or both A and B.

Since the computation of a transpose of a matrix is simply the act of switching the rows and columns of the

matrix, the effect can be achieved by switching the indexing of the Matrix arrays such that it indexes by

column then row rather than by row then column. This is achieved by simply switching the index

parameters. Since the transpose switches the dimensions of the matrix all references to the transposed

matrix must be switched.

If we take CPU Multiply A as an example you can see that all references to the dimensions or index of A have

been switched. In the first line, checking for equal inner dimensions. You can see that I am now comparing

the number of rows in a rather than the number of columns in one.

Likewise in the product matrix definition and the 3 for loops. Finally you can see that the A.Index statement

has had its parameters switched.

In the following example you can see how switching the index’s parameters essentially looks up the

transposed matrices indexes.

If we consider A as: And consequently its transpose:

(
1 2 3
4 5 6
7 8 9

) (
1 4 7
2 5 8
3 6 9

)

= [1,2,3,4,5,6,7,8,9] = [1,4,7,2,5,8,3,6,9]

Since the index function is: 𝑖𝑛𝑑𝑒𝑥(𝑌, 𝑋){ 𝑌 ∗ 𝑥𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 + 𝑋 } (x-dimension = 3)

If we input X as the Y parameter the result will be the beginning of the row at that index rather than the

corresponding column, then adding the Y as the X parameter gives us the corresponding column.

If we test this out and attempt to index 6 in both arrays we can see that passing (1,2), since we index from

(0,0), the function will return 5, if we lookup the 6th index we see that it is 6 in the array for matrix A,

however for the transposed array the value would be 8.

If we now swap the indexing and pass (2,1) to the index function, it will return 7, if we now lookup the 8th

index in the transposed array we can see that it is in fact 6! Thus by switching the index parameters we can

effectively transpose the matrix without any prior computation.

CPU-Add

This method computes the element wise addition of two matrices, it is used when applying biases to the un-

activated output of each layer during the neural network main process. And simply iterates through each

index of each matrix adding the contents at the two indexes together. Thus a single for loop is needed for

this iteration. Since this function will never be applied directly to user input it is assumed that the sizes of the

two matrices are equal to save computation time. The result is stored in a new matrix of equal dimensions

and returned.

In example the addition is as follows.

(
1 2 3
4 5 6
7 8 9

) + (
1 2 3
4 5 6
7 8 9

) = (
2 4 6
8 10 12

14 16 18
)

CPU-Add constant

This method computes the addition of a single value to every element in the matrix, the item to add is given

as a double precision floating point integer “B”. A resultant array is constructed with the same dimensions as

the given matrix “A”. In a single for loop which iterates through each element of the matrix the value is

added and stored in the resultant matrix C. C is then returned. This method is used during training to

compute the optimised equivalent function discussed later to the sigmoid function Outputs(1 - Outputs).

Sigmoid

Computes the sigmoid of every element in a given matrix with the sigmoid transformation being:
1

1+𝑒𝑥

Since this is applied element wise a single for loop is needed iterating up to the size of the network.

Page 85 of 121

CPU Scale

Multiplies each element in a matrix by a single double precision floating point value, this is used primarily

during training to scale the error signal using the learning rate to decrease the change in the weights.

A single for loop is used to achieve this iterating through each element of the matrix upto the last element.

The resulting values are stored in a new array of equal size as the input and returned.

Element wise CPU

Multiplies to matrices together element wise, this means multiplying each element of the matrices together

in turn given that the two input matrices are of equal dimensions. The result is stored in a new matrix of

equal dimensions.

Page 86 of 121

GPU acceleration
I will be using CUDA compute to accelerate the training of my network since the GPU has much greater

facility to multiply matrices – the biggest task undertaken when training a network. Thus I have extended the

matrix library to contain matrices stored on the GPU device and repeated all CPU matrix math functions for

the GPU.

To understand my code you must first understand how matrices are multiplied on the CPU here is the

method I wrote for CPU matrix multiplication which I use during normal execution as the vast majority of the

target audience will not have dedicated graphics with CUDA compute capability, especially since a high spec

card is required to make the GPU compute worth it.

CUDA

CUDA is a technology developed by nvidia to accelerate compute workloads. It functions by using stream

units on discrete graphics cards which, although limited in flexibility can perform double precision

calculations at much greater speed than the processor, not due to increased instruction execution but due to

the highly parallelised nature of how they compute. All graphics cards have many stream processors each of

which can be thought of as a stripped down CPU core, Nvidia brands these stream processors as CUDA cores.

The first method I wrote was to find the number of stream processors that can have an open thread on the

device. For me this is 1024 as I have a 780ti.

Each thread on the GPU can then run functions in parallel with every other thread on the GPU. This allows

for highly parallelised work loads to be completed much quicker. For multiple operations to be completed on

a single thread as if they were parallel you must then employ the use of blocks. Each block runs on a single

thread and each block has dimensions (up to three) every index in every dimension is then ran in serial. With

the GPU managing the order of execution. This allows for operations with a complexity greater than 1024 to

also run as quickly as possible.

In the diagram below you can see how the host (CPU) executes a single function, which then triggers a

cascade of threads to run in parallel, each of which with a block ran in series. The white squares each

represent a thread. The squiggles, each index in the block, being ran sequentially within the thread. On

completion the CPU then only has to execute a small amount of code in serial before the vast majority of

computation can be handled by the GPU.

Each block executes what is known as a kernel a function intended to run on the GPU instantiated with the

dimensions of the threads and the blocks. The kernel executes low level code that has access to the index of

the thread, and the index(s) of the block within that thread, it can also be given extra parameters such as

pointers to the start of arrays on the device.

Page 87 of 121

Bellow you can see how each thread can be split into many blocks which can then each run a kernel:

Below can also see how, if the number of stream processors vary, and therefore the number of possible

threads varies the number of blocks can change on each thread to compensate for the lack of threads.

In the example below, 8 operations are to be run in parallel, for a device with 4 threads each can run just 2

of the 8 operations. If the device only has 2 threads each thread must then execute 4 operations and thus

the kernel will take twice as long to execute on the second device.

It is also worth noting the issues that arise due to sub-dividing an algorithm to run on a GPU since they are

well accustomed to algorithms with a 2𝑛 complexity that can be divided many times without any blocks

having nothing to run. I describe later the approach I have had to take to counter this issue.

Page 88 of 121

GPU Matrix Class

Referencing the code dump Training/Matrix: Matrix class (GPU)

The GPU matrix class exits to encapsulate the storage of a matrix on a GPU, the key issue with this is that

there is no direct memory access from the CPU to the GPU. Consequently none of the advanced data

structures used previously can be used such as std::vector, as they assume the array is to be stored on the

host. Instead the array is stored sequentially following a pointer to the start of the array. The double

precision floating point data type pointer is the same as that used on the CPU but when allocated the

referenced memory location will not be accessible by the program as it instead references a location on GPU

memory. Since the only variable we are storing relating to the matrix array is the pointer to the start of the

array, the class must crucially store the size if the allocation as there is no other way of knowing. Although

the size, x and y variables existed for the CPU matrix they are critical for the GPU matrix, otherwise the

device memory allocation could be easily overflown. Since we which to dynamically allocate the matrices on

the GPU rather than have the sizes static, I have employed the use of “cudaMalloc” this allocates a given

number of bytes on the GPU’s memory and stores the pointer to the start of the allocation in the first

parameter, the pointer to our array. Since double precision floats use 8 bytes of storage, I use the “sizeof”

operator to calculate the size of the allocation necessary.

In summary, on construction the matrix class will allocate the required amount of memory on the device and

store the pointer to this allocation in the array pointer, additionally the dimensions and size of the array will

be stored within the class. The size and dimensions of the matrix are stored on the host (CPU) since they are

never directly used during matrix maths.

Since the array is not stored in host memory, if it is needed by the host the contents of that index in device

memory must be copied to the host. I use the “cudaMemcpy” function to achieve this which is given the

pointers to the target location, in this case a memory address on the host; and pointers to the memory

address of the source, in this case an address on the device. The function finally requires the type of

operation to be carried out, in this case a copy from the device to the host.

If a value is needed to be copied from the host to the device the converse is carried out, where the source is

a location in host memory, the target is a location in device memory and the type of operation is host to

device.

With the above foundations laid the rest of the class is very similar to that of the CPU matrix class, just with

the appendage of the new memory access methods. The main other difference is the added complexity in

the Random Fill method used to instantiate weights and biases. Since the first layer weight matrix has a large

number of elements: 787200. To store every single one with separate CUDA memory copy statements is

extremely inefficient. Consequently, I allocate an array of equal size on the host, fill it with random values

then copy the entire array to the device at once. Followed by freeing up the array.

Page 89 of 121

GPU Matrix maths

As I have mentioned every function in the CPU matrix mathematical library has been duplicated to run on

the GPU. Since the vast majority of latency is due to the interaction between the CPU and GPU I have

modified the parameters of the majority of methods to accept the output matrix as a parameter, rather than

constructing a new matrix after every operation. Additionally, memory management on the GPU must be

carried out manually and is not controlled by the operating system to the same extent as system memory.

Consequently, I have helped mitigate the issue allowing all the matrices needed during training to be

constructed at the start of the program such that no new matrices need to be created.

GPU Matrix multiplication

The CUDA kernel contains the code that will be ran directly on the GPU, it has been logged in Training/Cuda

Code.

The code in the GPU kernel relies on the thread ID and block ID to identify the instances position in the call.

They represent effectively each index in each nested loop in the matrix multiplication CPU function.

In order to have the kernel execute correctly you must declare the dimensions of the kernel before it is

called this can be seen in the Matrix Math namespace in the GPU multiply functions.

In order to keep the GPU kernel calls not to dis-similar to that

To execute matrix multiplication on the GPU device I first check the dimensions are valid as per usual.

Next I determine the dimensions of the threads and blocks to execute the multiplication. For my

implementation I have considered two options to maximise the similarities between the GPU Matrix

multiplication and CPU matrix multiplication. Both of which map the 2 for loops to the thread/block

dimensions.

Side note: only the first two loops in the triple loop structure in the CPU multiply code can be ran on the GPU

this is due to the last loop appending to the previous value of a single index in memory, if all three

components of the loop where mapped to the GPU, they would all be ran in parallel, this would cause all of

the final loops to attempt to write to the same memory location at the same time, which is not possible,

consequently on one of the block index’s would be allowed to write, causing the wrong resultant value to be

stored in that index as it would only be the result of a single multiplication rather than a row of

multiplications.

 The first method is named “Thread mode”. This is called if the first two loops, if the multiplication was

running on the CPU, have a product less than or equal to the number of threads available on the GPU. This

maximised the number of open threads and therefore the number of parallel operations occurring each

second, reducing the time taken for the operation which is simply then the sum of the serial operations in

the final loop of multiplication. In this case I set the thread x dimension equal to the number of rows in

matrix A, this matches the first loop in the CPU multiplication. I then set the thread y dimension equal to the

number of columns in matrix B, this corresponds to the number of iterations in the second loop of the CPU

equivalent operation. The last loop in the for loop is ran sequentially within the kernel. The reasons for

which are described in the side note above. In summary “Threaded mode” runs the first two loops of the

multiplication in parallel, and the last in series.

The second is “non-threaded mode” this occurs if the product of the size of the first two loops is greater

than the number of available threads. Consequently we can only run the first loop in parallel, on its own

thread, to implement this I set the x dimension of the thread structure to the y dimension of Matrix A; this is

the same as in thread mode so represents the number of iterations in the first for loop in the CPU operation.

All other thread dimensions are one. The second loop then must be ran sequentially so the block x

dimension is set to the number of iterations in the second CPU loop, being the x dimension of matrix B. in

summary this “non-threaded mode” runs the first loop of the matrix multiplication in parallel, while all

others are ran in series.

Due to the nature of CUDA processing the GPU device will automatically assign some blocks to an individual

thread if not specified thus performance is still nearly optimal even if some threads are not in use.

Page 90 of 121

If I was to redesign the GPU acceleration I would research methods of more optimally distributing the load

across different blocks and threads, to ensure the GPU is under full load at all times. As it is during training at

least 70% of the GPU is constantly in use, I think that is an ok level as there is some processing time between

GPU operations to account for the lower utilization. Additionally there is a limitation on the maximum size of

the matrix multiplication, as depending on the GPU device the matrix is limited to the number of threads

available to perform the operation. This is not an issue in my scenario since the number of threads possible

on my graphics card is 1024, equal to the largest possible matrix multiplication with network dimensions

1024,768,512,256,1.

Once the dimensions have been declared for the kernel. The matrix multiplication kernel is called with CUDA

kernel parameters denoted in the <<< >>> operators. Here I pass the dimensions of the blocks and threads. I

then pass the pointers to the matrix array. The referenced memory allocations are resized before calling any

multiplicative methods so memory overflow does not have to be considered. I have extensively tested

various sizes and have not experienced any. Finally I pass the x dimensions of all passed matrices, this

information is required for the indexing in the array as the arrays are indexed by rows then columns (y * X +

x). The A matrices X dimension serves a second purpose as it is the number of iterations in the final loop

located within the kernel.

Speaking of the kernel, the application will now enter the corresponding “threaded/non threaded” kernel.

The kernel will be called as many times as the product of all blocks multiplied by the product of all threads.

Each individual kernel will be called effectively knowing which iteration in the second loop it is in. For

threaded mode this will be given by the thread x index as the index in the first loop, for the second loop it’s

the thread y index. Additionally for the non-threaded mode first loop’s index will be given by the thread x

index but the second loop is given by the block x index. The kernel then executes the dot product of the

given row in A (given by the thread x index in both cases) and the given column in B (given by the thread y

index or the block x index for thread and non-threaded mode respectively). Since the kernel is called in

parallel every combination of row-column dot products are performed and the matrix multiplication is

complete!

Note the index function is referencing the force-line index function, which as the name suggests forces the

index function: “y * XD + x” when it is referenced, filling the given parameters.

The functions have been repeated for all possible transpose configurations where multiplication A

represents the case when matrix A is to be transposed, multiplication B is where B Is to be transposed and

finally multiplication AB is where both matrices A and be are transposed. All these transposed variants

implement is the switch of all index and dimension operations carried out on the given matrix. This is the

same process as carried out for CPU multiplication, only there are far more dimensional references.

GPU sigmoid

The first declared function in the header is tagged as “force in line” this means that they must be referenced

within another CUDA kernel. The first example of this is GPU Sigmoid, it simply takes an input parameter as a

double and returns the result of the sigmoid function also as a double. This function is used when applying

the sigmoid function to an entire matrix. The kernel for which, conveniently is declared after.

The GPU Sigmoid Array kernel applies the aforementioned sigmoid function to an entire array, since the

matrix may be viewed as simply a vector, or single dimensional array, there are standard methods for

applying CUDA acceleration for a “map” function, in this case we are mapping the input matrix’s vector array

through a sigmoid function, meaning the function is applied element wise.

In essence the kernel need only be called x*y times, consequently there are many indexing methods. The

one I have used caps the number of threads to 512 since all CUDA compute 2.0 graphics cards (v2.0 is

required for double precision calculations) have at least this number of threads. Next the dimensions of the

block is determined as the remainder of the iterations required that cannot be for filled by a thread. In the

kernel l itself any remaining index’s are handled within each kernel call.

Page 91 of 121

Element wise multiply

Element wise multiply functions the same as element wise multiply on the CPU, multiplying every index of

the first matrix by the corresponding matrix in the second. It uses the simpler but less efficient method I

used for the GPU matrix multiplication as it is far more readable and the element wise multiply takes

negligible time in comparison to an exponent function. The function employs two threading modes one if all

iterations can be assigned its own thread, another in the case where the second loop has to be ran

sequentially in a block. Once each iteration has been assigned a thread id or block id the kernel is called and

the corresponding indexes are multiplied and stored in matrix C.

Add constant

Uses the exact same indexing strategy as element wise multiply but calls a kernel that adds a constant to the

single input matrix.

CUBLAS based operations

For some functions that I had insufficient time to manually implement I have used the CUBLAS

compute API from Nvidia, this handles array/vector operations and is extremely well optimised. The

functions utilizing the CUBLAS API as follows:

Create CUBLAS handle

All CUBLAS API function calls require a handle to be referenced, this handle stores the specification of the

GPU so that the library can fully utilise the available device(s). The create CUBLAS handle function is called at

the start of a script, for convenience I added it to the constructor of the GPU neural network as it is a

necessity for its operation. The create CUBLAS function first instantiates a Status variable and sets its value

to failure. This Status value is then assigned a value when the CUBLAS API “cublasCreate” function is called

given the null pointer to a handle structure passed to the function. The API call then returns a status

message, if this message is anything but success the method will loop until the creation is successful. When

the handle is successfully made the method will then return the “EXIT_SUCCESS” flag.

Scale

Firstly for scaling (multiplying every index in the matrix by a constant) a copy must be made of the input

matrix, this is due to the CUBLAS function applying the scale to the input parameter, if a copy was not made

the input would be modified. I first create a CUDA error structure and assign it launch failure, I then call the

copy until the operation is successful. The cudaMemcpy function takes the destination pointer, the source

pointer, the size of the array in bytes and the copy type as parameters. Next a similar tactic is employed for

the GPU scaling as was used when creating the handle, a status variable is initialised as a failure, then the

CUBLAS operation is carried out until it return success, if there is a failure I also recreate the handle as I

found during testing that this almost always resolved any errors. The CUBLAS API function used here is

cublasDscal, it scales an array of given size (number of doubles rather than bytes) with a pointer to the

constant scalar and the output array. The final parameter is another constant “step size” if you only wish to

scale every 𝑛𝑡ℎ element.

 Add

The add function adds two matrices of equal size together and stores the result in the given matrix “C”. this

requires two operations first, like scaling is the copying of the, in this case, second input matrix to the

output, otherwise its contents will be modified. Then we call the cublasDaxpy function given the input matrix

and the output matrix C, where C is equivalent now to B. each element in A is then added to each element in

C and the result is stored in C. The function parameters are the CUBLAS handle, the size of the matrices, all

are assumed the same, a pointer to a scalar to be applied to matrix A (this is set to 1 for no scaling), the

pointer to the array to add (matrix A), the step size for the first array, then a pointer to the array to add to

and store in, finally another step size for the second array. Like before I repeat the operation until it is

successful, recreating the CUBLAS handle after each failed attempt.

Page 92 of 121

Machine learning
The machine learning in the solution is handled with two distinct elements, the first is the CPU network and

training utilities, these allow for training without a graphics card at the cost of a decreased training speed for

large networks. The second part is a GPU network and its corresponding training utilities, all matrix data is

stored in device (GPU) memory for quick retrieval rated at 7gbps for my older 780Ti, with a relatively low

latency, for new cards using HBM memory this increases to 307GB/s!

There are three main stages to training. The first is locating and importing logs to memory. The second is

simulating parkinsonian behaviour on existing, known healthy mouse data. And finally is the network

training itself.

CPU Network
Referencing Training/Network/CPU

Neural Network class

The neural network class encapsulates all the data required during training and execution of a neural

network of given dimensions. The default properties are a number of arrays of matrices, these arrays are

vectors so can be dynamically resized during runtime. The matrix arrays and their role during training are

described below: (The number of arrays could be reduced but an increased number greatly aids debugging

and the detail obtainable when training in diagnostic mode, described later)

 Each index in the vector indicates the layer to which the matrix applies to.

• Outputs: Stores the outputs of each layer in the network starting at index 1, index 0 is actually the

inputs for the network as this makes the feed forward and back propagating methods far easier to

follow, for the default network topology this gives output sizes of (1024,1), (768,1) …. The second

dimension is always one to indicate a single row as the input and output should be a vector.

• Weights: stores the weights for the network, these are large matrices used to store the weight of

each neuron connecting two nodes. They each will have the y dimension equal to the size of the

output vector for the layer and x dimension equal to the size of the input vector for that layer, in

example the first matrix has dimensions (768, 1024).

• Biases: These are the biases added to the output of each layer before the activation function

(sigmoid) has been applied. They, as suggested by the fact the must be added to the outputs, have

the exact same dimensions as the outputs for which ever layer, they are applied to.

• Raw Outputs: Used during diagnostic feed forward processing to store the un-activated outputs

before the biases have been applied, concequently they have the same dimensions as biases and

therefore the output for the layer they apply to.

• Gradient: stores the gradient of the output of each layer, this is used after calculating the error

signals and is the sigmoid differential of the output element wise multiplied by the error for that

layer, thus scaling the sigmoid gradient of the output by that node’s responsibility for the error at

the output. Due to this element wise multiplication, the gradient must have the same dimensions as

the output for that layer.

• Error signal: stores the error for at each output with respect to the overall output of the network,

calculated by back propagating errors through the network. Since the error is associated with the

output of a layer all error signals have the same dimensions as the output of their corresponding

layer.

• Weights D: the change in the weights to be applied after each training iteration, this is the result of

multiplying the gradient the output for that layer by the transpose of outputs from the previous

layer (otherwise known as the inputs for that layer), this calculation results in a matrix with y

dimension equal to the outputs for that layer and x dimension equal to the inputs to that layer, thus

it has the same dimensions as the weights for that layer, so the two matrices can be added together.

Page 93 of 121

Construction

The network is constructed with a default constructor, in C++ the default constructor is declared when a

member function has the same name as the parent class, in my case this is Network CPU. I have added a null

constructor and passed over construction to an external setup function to allow the network to be declared

outside a of a main loop, this allows me to declare the structure without constructing it so I can reference

the variable in global functions without needed to pass the network as a parameter, this is required for the

windows message loop as its default parameters of HWND (window handle),message, WPARAM and

LPARAM, do not allow for the addition of a CPU Neural network parameter. Consequently, the network had

to be declared globally in live detection, warranting the null constructor. The non-null default constructor

takes a parameter “Dimensions” this is a vector, of any size that contains a series of numbers, the number of

numbers i.e. the length of the array indicates the number of layers in the network. The value of each layer

represents the size of the output for that layer with the first representing the size of the input.

The dimensions are then passed over to the setup function which constructs the corresponding weights,

biases... in each layer to the correct size, the size of each is described above with reasoning.

I also store the number of layers for the network in the NoLayers variable.

Neural network process

In this function I run the forward pass for the neural network, this consists of iterating through each layer of

the network, multiplying the input to that layer by the weights, applying the bias to the product matrix then

applying the activation function to the result, until the final layer is reached.

This is achieved by starting a for loop from layer zero (the index of the inputs in the array of output matrices)

to the last layer, one index of the output array from the final output matrix.

In each iteration I multiply the weights in the next index (the indexing for weights starts at 1 to match the

layer number) by the input to that layer. This results in a matrix of dimensions (Weights. y, outputs. x = 1)

note this gives the a returned matrix of size equal to the inputs to the next layer. I now apply the biases by

adding them to the result of the “weight, input product” using another matrix math function. The result of

this is then passed through the sigmoid function. Which normalises the output of that layer to values

between 0 and 1.

Each layer if the trained network will serve to recognise contrast in the data, an example of this is in the first

layer the final index of the input matrix is the sampling interval of the data, the trained network should use

this value to increase the value of the index in the input that corresponds to frequency responses in the

range 4-6Hz which highlights any contrast between these indexes and the rest of the input, thus highlighting

a known component of Parkinson’s, the trained network will be able to use much more information and will

classify based on a complex function applied to the inputs capable of recognising subtleties in the input data.

There are a couple more basic variants of the neural network, the next takes a vector array of doubles, since

the vector array structure also stores the size of the array, the size does not need to passed. This variant uses

the input parameter as the first layer of the network, consequently I create a new layer 0 matrix using the

inputted array, since it should have the same array dimensions as the Outputs[0] array. Next I run the first

layer of the feed forward network outside of the main for loop so I can use the custom input layer matrix for

the first iteration, I then enter the main for loop used in normal feed forward execution, starting from the

next layer (2nd). This method is used when data has been generated without the use of a Fourier transform,

giving the library scope to test with this component disabled.

The next variant is very similar to the prior but uses a static array of complex numbers, indexed from the

start with the pointer passed in the first parameter, since this pointer holds no other information the size of

the array must also be passed. However since the static array is not a vector type and contains complex

numbers we cannot directly assign it to a new matrix due to this I added a matrix multiply function that

takes the B input as a static complex array of a given size, this restricts the x dimension of the product array

to 1. The matrix multiply function simply uses the absolute values of each index in the complex array to

perform the calculation. Like before this first layer is processed outside the main loop, but on completion

enters the loop.

Page 94 of 121

Finally I have repeated the neural network processing functions with diagnostics, this has been used to

produce the forward pass with full diagnostics described later. In essence it breaks up every operation and

stores the output, printing them to the console with the relevant identifiers. The function first prints the

current layer being processed with a long string of slashes to make it obvious where each layer starts and

finishes. I then print the inputs to the network followed by the weights they will be multiplied by. I then

perform the multiplication of weights by inputs and store the results in a temporary “post weights” array.

This post weights array is then printed to the console with the corresponding identifier. The next step of the

forward pass is to apply the biases. Accordingly I print the biases, perform the addition, store the result and

display the result, with the apt identifier “post biases”. Finally I apply the sigmoid function and store the

result as per usual execution and display the output of the layer.

All matrix prints are printed in columns then rows. The values are delimited by spaces so that they can be

read by my checking tool: a website that allows for the easy multiplication of matrices online using text

copied from the console, helping the verification of the neural network process.

Demonstration on feed forward pass, using trained XOR network:

Page 95 of 121

You can see above each stage of executing a 3 layer neural network with dimensions 2,4,4,1. Each layer is

shown in full until the output is reached. The desired XOR and actual outputs of the network are as follows:

Input Target Actual

00 0 0.0022142013878784744078387

01 1 0.9978379072535816796118979

10 1 0.9978379073152788825140647

11 0 0.0019977283784136231833961

Page 96 of 121

Training

Training the network is the most mathematically complex section of my project, here the weights and biases

are adjusted until the outputs converge to a desired value. In my project this is handled with three functions

all called in series when the main backpropagation function is called. These are, calculate error signals,

update weights and update biases.

During development I found an optimisation when updating weights which is documented below.

Optimisation

As I have coded my solution, I have realise that there is a decision to be made with regards to the

backpropagation of errors since the gradient defined below obtained with the chain rule does have an

alternative.

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 = 𝜎′(𝑧𝑘

𝑙)

 This gradient serves to reduce the change of the weights as the raw output of a neurone reaches negative

infinity and infinity. The equation is derived from the application of the chain rule to obtain a result for the

gradient of a weight with respect to the error function which is then used with the delta rule to update the

weights in the network. This has the effect of preventing the weights from growing to extreme values.

If we plot the function here, 𝜎′(𝑥).
𝑒−𝑥

(1 + 𝑒−𝑥)2

As you can see output of the differential of the sigmoid reaches 0 as the input nears infinity and negative

infinity. In terms of the network this means that as the input of the neurone nears these extremes the

weight will change less. Also you may notice that the equation involves the calculation of e^-x which is a

computationally difficult function and thus requires comparatively long time to execute than e raised to

some integer value. Since backpropagation will require the sigmoid differential to be called for every weight

in the network of which there are 1283328 it makes sense to try our best to optimise these equations.

We also have the result that 𝑎 = 𝜎(𝑧𝑘
𝑙) thus there is a relationship between the activated output and the

sigmoid differential applied to the raw output. This relationship is that as 𝑧 nears infinity and negative

infinity the activated output nears 1 and 0 respectively. So as the activated output nears 0 and 1 the change

in the gradient should near 0.

We can then see that an alternative equation that would behave similarly is that

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 ≈ 𝑎(1 − 𝑎)

As the input nears 0 and 1 the output of our new function nears 0 thus it seems like a good replacement for

the sigmoid differential.

We must now decide whether to stay true to the definition derived through calculus which will is more

precise but highly time complex or to use the far simpler and less computationally complex 𝑎(1 – 𝑎).

Page 97 of 121

To achieve this, we must write both in terms of the same variable and compare the fit of the graphs.

We can use our result from earlier to help us with this: 𝑎 = 𝜎(𝑧𝑘
𝑙), we can then substitute 𝜎(𝑧𝑘

𝑙) for 𝑎 into

our new function to be tested, this results in:

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 = 𝜎′(𝑧𝑘

𝑙) ≈ 𝜎(𝑧𝑘
𝑙) ∗ (1 − 𝜎(𝑧𝑘

𝑙))

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 =

𝑒−𝑥

(1 + 𝑒−𝑥)2
 ≈

1

1 + 𝑒−𝑥
∗ (1 −

1

1 + 𝑒−𝑥
)

After plotting both we se that 𝑦 = 𝜎(𝑧𝑘
𝑙) ∗ (1 − 𝜎(𝑧𝑘

𝑙)) as 𝑧𝑘
𝑙 varies is

And when plotted on top of each other:

We can now see that the two functions are in fact identical! Thus, no precision is lost when making this

optimisation. Consequently, my backpropagation methods follow this in order to greatly decrease training

times. We can now write:

𝜕𝑎𝑘
𝑙

𝜕𝑧𝑘
𝑙 = 𝜎′(𝑧𝑘

𝑙) = 𝑎(1 − 𝑎)

Page 98 of 121

Calculating error signals

Error signals are calculated by backpropagating errors through the network. This is well documented in my

design. In the technical solution I have implemented the algorithm with two for loops. The first for loop

iterates through each output of the network, calculating the associated error, the second for loop

propagates this error back through the network in line with my design. With the exception of the

multiplication involving the transpose of the weights instead, otherwise the dimensions are invalid for

multiplication.

Update weights

The update weights method differs from that in my design as I have integrated the scaling of the error

signals into the main loop. Additionally, I have applied the more computationally efficient method of

calculating the gradient for which the sigmoid differential is equal to the output element wise multiplied by 1

– the output. This is achieved by scaling the outputs by minus one then adding the constant 1 to all indexes

then multiplying the resultant sum by the outputs. The function then continues as per the design where

Outputs[layer]. transpose is replaced by CPU multiply B where the B parameter Outputs[layer-1] (the minus

one is due to the shift due to the input layer) is transposed.

Update biases

 This method is very simple and has not changed since designing it.

Train

Combines the neural network process followed by calculating the error signals from that iteration, then

using these error signals to update the weights and biases adjusting the network to better classify in future.

GPU network
Referencing Training/Network/GPU

Neural network (GPU) class

The neural network class for operation on the GPU is very similar to that for the CPU, however it features

more matrix members. The reason for which is that the GPU takes a comparatively long time to allocate

memory when compared to the CPU equivalent, thus it would lead to inefficiencies during training if the

application was wasting time allocating device memory. Instead I allocate all matrices for the given network

size before training and pass both the input matrices and the matrix to store the output in so that no new

matrices have to be constructed. Since the GPU network is intended for maximum training performance, I

have sacrificed the memory requirements for performance.

The majority of the matrices are the sane as in the CPU variant, with the exception of the following:

• Scaled sig stores the error signals after they have been scaled by the learning rate.

• One min outputs stores the sum of the negation of the outputs and the constant 1, this is used

during training when calculating the change to the weights

• Output differential stores the product of one min outputs and the outputs matrix as this forms the

sigmoid differential of the outputs

• Post weights used during the feed forward process, it stores the product of the weights and inputs

to that layer with biases added, in other words the output of each layer before the sigmoid has been

applied.

• Weights copy is used when updating the weights as the addition function does not add to an input

matrix, instead it stores the output in a different sum matrix, consequently the weights are copied to

weights copy and then weights copy is added to weights deltas and the result is stored in the usual

weights matrix.

• Biases copy is defined as the same process has to be carried out for biases too.

I also have to store the CUBLAS handle, a handle to a structure that stored GPU information, I describe this

earlier in my technical solution. Likewise I store the max number of threads for the given GPU device rather

than retrieving this before each matrix kernel is executed.

Page 99 of 121

Construction

Construction is nearly identical to that for a CPU targeted neural network; the construction has the same null

constructor and the normal constructor calls a similar setup function, the only difference in this setup

function is that the CUBLAS compute is constructed, populating the structure with device data. I next check

how many threads are on the device and assign the “Max Threads” variable to this value.

Randomise weights and biases

This function triggered the alteration in the GPU matrix method to populate itself with random values in a

given range as I found that randomly filling the GPU matrix when the application was started took a

considerably long time as the CPU was retrieving and storing 1310976 weights and 2560 biases from the

GPU device. This increased the time to generate the network massively. As a result I create an equivalently

sized weights matrix on the CPU using the malloc memory allocator for main system memory , and fill this

with random values. I then copy the contents of this CPU array to the GPU once it has been populated using

the CUDA memory copy function. Finally I free the CPU array from memory.

Main process

The main process is not too different to that for the CPU, each operation is carried out separately since the

matrix functions don’t return the resultant matrix. Each layer is iterated through, the weights are multiplied

by the inputs for that layer and the result is stored in post weights, the biases are added to the post weights

and the sum is stored in the raw outputs. Finally the sigmoid function is applied to every element in the

result is stored in the outputs array which will be used as the inputs to the next layer.

 Calculate error signal

Calculating the error signals using the GPU, backpropagating errors is identical to the CPU version, I have

chosen to keep the error signal calculation for the last layer (first iteration) on the CPU as there is only one

output from my network, it also gives me added flexibly to change the error function with out having to

redesign a CUDA kernel.

The backpropagation by multiplying the transpose of the weights by the error for the next layer is the same

as the CPU but is executed using a GPU matrix maths function as the weights matrix are large so the product

would take a long time to calculate on the CPU.

There is also a diagnostic mode which makes use of the extra matrix declarations.

Updating weights

Is more complicated on the GPU as the weights cannot simply be appended to, instead a copy must be made

and the copy must be used to add the weights to allowing the weights deltas to be applied.

The other change is again due to the output being stored in a pre-constructed matrix passed to the function.

Consequently the update weights function is far more complex.

Again there is a diagnostic mode making use of the extra matrix definitions, printing them to the console.

Updating biases

When updating biases I make another sum to the biases; this requires that I make a copy of the biases to

append the values to, so that I can store the result in the actual bias array, similar to how I append values to

the weights.

Train

The train function is the culmination of the neural network process followed by backpropagation (calculating

error signals and updating weights and biases accordingly) followed by calculating the error in the final

output.

I also check here for infinities which can arise if an error occurs during training, if it does the training

iteration is skipped.

Page 100 of 121

Log importing
Logs are stored in “dopbf” (detection of Parkinson’s binary file), these store a sequence of samples and are

described in my design. Training will use a multiply log files located within a directory. In order to find and

store the location of the logs I perform a recursive search for “dopbf” extensions and store the path to them

in an array of strings. Referencing Training/Training classes, the recursive search is located in the training

class which stores an array of classes for training. In the classes constructor I pass a path to a folder. The

path to this folder is found by requesting the user to use file explorer to select directory that contains logs.

The functions to request file paths / directories can be found in Training/Training files. Going back to

Training classes, the search within the directory is recursive such that it can navigate directories within the

given directory and search for logs in there, this makes it far easier to import logs as the user doesn’t need to

move all logs to the same path. The call Is made to my search algorithm within the constructor to the open

log method located within the binary storage class (in training files), this takes the directories path and

applies a directory iterator, although the iterator is listed under experimental methods it has been confirmed

to be stable since C++ 17 for use with windows. This iterator is passed to a for loop, in each iteration of this

for loop I can access the iterators properties which contains information concerning the current file. If the

extension to the current file is “dopbf” I add the full path to it to an array of strings (resizing said array prior),

otherwise I check if there is no extension for the file at all, if so, it is a directory so I call the function again

given this path beginning a recursion into that directory. If neither extensions are found the file is ignored.

once every folder in the directory has been iterated over, I return the number of logs I have found.

Adding classes
Once I have found an array of paths to log files, I construct a queue of 1000 null and target logs to train with

at any given time. I use the circular training data class referencing Training/Training utilities. This is a simple

queue that stores the inputs for a class and its corresponding outputs. To create this array in the main

trainer I use the training classes “Add class” method, this alternates between adding null and target classes

to the queue, incrementing the size of the queue until its size is the desired size of 1000. I cannot simply

iterate 1000 times as errors often occur when adding a class such that the size of the queue is not

incremented. The two things that signal failure are the binary log file the data is read from being less than

2048 samples long or an error occurring in the Fourier transform due to an extreme value, this can result in

an infinity in the result of the transform which I check for and return failure if necessary.

During training after every training iteration (one sweep of training in the entire queue of 1000 classes) I pop

the last item from the queue, generate a new class and add it to the queue, making sure I alternate between

null and target classes.

Simulating parkinsonian behaviour
Parkinsonian behaviour is simulated with the use of two functions, one is the add sine function and the other

is add cog wheel, I document these later in the formatting section of my documentation, but when they are

used for training I had to make a decision for the parameters.

I set all the parameters for the sine function to random within given ranges, the frequency is between 4 and

6 hz as this was found in my research to by typical for tremors from people with Parkinson’s. Next is the

amplitude, this is again random between 0.2 and 1, I have given a large range as I believe the amplitude is

the largest factor that makes the disease easier to diagnose, in turn the maximum amplitude is equal to that

of the variance. The X offset is configured to ensure the network doesn’t recognise only a single phase of

sine wave so is in the range 0 to pi to give potentially a full shift of phase. Finally, is the y offset, this is again

to make the network more flexible and shifts the sign wave up or down a bit, as I don’t wish to change the

mean too much this is configured as -0.2 to 0.2.

Next is the add cog wheel motion, this function automatically randomises the values given a parameter, how

it does so is explained in formatting, I chose the maximum amplitude to be just 0.3 so that the effect is

rather subtle, the duration lasts a maximum of 30 samples so the motion lasts ~300ms, and finally the

occurrence is up to 40% of the time.

Page 101 of 121

Formatting
Referencing Formatting

In this chapter I explain anything I missed when designing the formatting headers, in detail, explaining the

rationale behind; normalisation, average interval calculation, filling gaps in the samples and adding

parkinsonian characterising’s with sign waves and a cog wheel motion. But first I hope to explain how

random numbers are generated in my project.

Random number generation
In my projects I use two random number generators, both use the same method for generation, the first is

random integer generator, this generates an integer in the desired range, the second is a random double

which generates a double precision floating point integer in the desired range. I created a class for this

generation as creating the random number generating classes takes a considerable time, when they can be

reused, this increases performance as random numbers are used throughout my project, and if there was a

long delay for each retrieval performance would drastically decrease.

Both variants have the same members constructed with different parameters. The first is a random device

this is a uniformly distributed, pseudo random non-deterministic number generator, if a random number

generating hardware device is not given the same sequence can be produced by this generator. I then

declare mt representing the mt19937 class, which applies the Mersenne twister, a pseudo random 32 bit

number generator, the fact that the twister is only 32 bit is ok as the range of values Is never large the

resolution is still acceptable. Finally I have a uniform real distribution declared as RandomDist, this uses the

given Mersenne twister to retrieve a random number in the given range, it is constructed with a type

parameter of double to indicate a uniform distribution of double precision floating point numbers.

When the class is constructed I initialise all the properties by instantiating the Mersenne twister with a seed

given by the random device followed by discarding the first few thousand iterations of the random device

based on the current time in micro seconds, this counter the issue described earlier where the random

device can generate the same sequence of numbers, giving the Mersenne twister the same seed. Finally I

construct the random distribution for the given range using the Mersenne twister.

To retrieve a random number from the class I simply request the next random number from the stack from

the RandomDist variable.

The same strategy is employed for the random integer distribution but the RandomDist variable is

constructed given the data type lass rather than the double data type.

Normalisation
Normalisation has barely changed in its functionality since my design, although during development I

decided to add some error checking to ensure the size of the array requested to be normalised is greater

than 0, this is due to the mean being calculated by dividing the final x term by the size, if the size is 0 the

application may crash. Additionally, I assign the new samples time and time delta properties as they are used

later.

Sampling interval
This function was only briefly mentioned in my design but as the name suggests it calculates the sampling

interval of the mouse in use. It does this using the assumption that the mouse has a constant refresh rate

when moving as this is the case for the majority of mice, consequently the minimum values should hold this

refresh rate once the anomalous results have been discarded. Some of the values may be very large as they

are from when the mouse was stationary which could potentially be days! Consequently, the average is not

suitable.

To calculate the refresh rate, I find the first 1/20th minimum values from the data set, since this function is

applied to 2048 samples this gives 102 samples to calculate with. I find the minimums by adding ascending

values to a queue once the values get to big, they fall off the end of the queue.

Once the minimums have been found I then average across the second half of these values and return this

value.

Page 102 of 121

Fill gaps
Fill gaps corresponds to my design for “Interpolate samples” and serves to prepare data for the Fourier

transform which requires evenly spaced samples. It is algorithmically the same but I also added the case for

when the gap is 10x larger than the average, as this generally represents the mouse being stationary. If I

interpolated between theses values the output could give an array with almost entirely the same positions,

which isn’t too difficult if the mouse is stationary for just 2048x the average interval (~1ms) therefore the

mouse would only ned be stationary for 2 seconds!

Get samples
Fill gaps is proceeded by a number of basic retrieval functions, these simply take an array of samples and

store each X/Y or the absolute value (magnitude) of the X and Y co-ordinate of the sample to an array of

doubles.

Add sign
The add sign function merely adds a sign wave to either a array vector of doubles or a static array of doubles,

with a given magnitude, frequency, x offset and y offset.

Add cog wheel
The add cog wheel functions function the same as that described in my design, adding a increasingly large

value to an array. There are a number of versions I use throughout the project, that take vector arrays/ static

arrays and that apply the function to the input or generate a new output.

The main difference to my design is the random amplitude/duration operators and the occurrence

parameter. These are applied using the given maximums where the minimums are sensibly defined, for the

amplitude the minimum is simply the negation of the maximum allowing for negative “cogs”. For the

duration the minimum is 2 allowing the effect to slip into noise, while still being there, as I don’t want it to

be too easy to detect. Finally the occurrence simply directly defines what percentage of the data will be

affected by the cog wheel effect, since this depends on the duration I take the average duration to be half

the maximum minus 2 as you would expect this to be the mean.

Prepare live data
The prepare live data functions apply the required formatting to raw data for processing by the neural

network. There are two variants: with and without simulating Parkinson’s. Both apply the normalisation of

the samples followed by calculating the average sampling interval then interpolating the samples. This is

followed by passing the data through a Fourier transform and storing the sampling interval (scaled down to

be close to 0) in the last index of the array, as this index is defined as a interval scalar which the network

uses to scale the frequencies.

The second function, simulating Parkinson’s, also adds a sign wave in the centre of the expected frequency

range with a reasonable amplitude, then applies the cog wheel effect all before passing the data through the

transform, the function then continues as without the simulation.

Now the data is ready for processing simplifying the classification in the main loop.

Page 103 of 121

Live detection
Referencing live detection/ main

Live detection is the third and final section of my project it handles collecting samples and once it has a

sufficient number classifying them using the neural network trained previously. It combines elements from

both the mouse client and the network trainer. It also has a new element being the classification plotter, a

new window that is created when requested at the system tray that displays a graph of the previous 100

classifications.

 The main function is identical as that for the mouse client so does not warrant explaining, with the

exception of “My WM Input” being modified such that the setup varies and the message loop is different.

Additionally in the main function I setup a the neural network, this is simply done using my neural

networking libraries import function which constructs a network from a given path to a model store, if the

default path is not found the function will fail, if the function fails the user is requested to find a new model

file and is repeatedly asked until the user exits the file explorer window in which case the program will exit.

Otherwise the model is imported to memory and the main loop continues to dispatch messages. The

window process is also modified since the menu is different.

When an input message is received the WMInputHandler is called (Referencing Live Detection/Live

detection header) like before but rather than writing the sample to a binary file it is added to a sample array

within memory. If the number of samples reaches the required amount the data is prepared for processing

by the neural network, if the simulate Parkinson’s flag has been set the data is prepared simulating

parkinsonian behaviour. The neural network process is then ran using the weights and biases retrieved from

the model store. The classification is then added to an array of classifications stored within the class, and a

update message is sent to the graphing window, if the handle to the graphing window is null the windows 32

bit send message function will do nothing.

The other changes to the code are the user interface, this includes an option to simulate Parkinson’s in the

data being collected or to show a graph. If the user choses to show the results in a graph a new window with

a corresponding message process is produced. The methods for the graph can be found within the plotter

class. The graph uses the SFML OpenGL graphics library a simple API offering basic drawing primitives.

Plotter
The plotter for live detections handles the setup and resizing of the graph displaying classifications over

time, it references code from the graphing header I created Referencing Live detection / SFML graphing

This header contains two classes the first of which is the line plot.

Line plot

This is a queue of vertices that each represent classifications from 0 to 1 that get drawn to the render

window (an overlay on a system window for graphics). When the lien plot is created an array of vertices is

created and the type for the vertex array is defined as a line strip (connected vertices) as opposed to a strip

of lines (disconnected lines) or a quad…

There are two methods of adding to the line plot, the first is to add a points from an array of double

precision floats each in the range 0 to 1 each of which is mapped to the correct position on both scales

dependant on window size.

The second method is adding a queue this allows for the classification queue to be easily interpreted without

losing its starting point.

Finally, the class has a draw method which draws the line primitive to a given render texture.

Draw grid

The draw grid class consists of a number of functions that simply divide the given window into lines

horizontally and vertically, and drawing axis labels at corresponding positions, consequently there are a

number of for loops in each components setup function. The grid is configured to draw 5 horizontal and

vertical lines, with the verticals being labelled from 0 to 1 and the horizontals being labelled 100 to 0. The

font for all text is loaded before the grid is setup such that the font is passed to the function.

Page 104 of 121

Setup

Moving back to the plotter, it uses the classes defined in the graphing library to construct a graph, loading

the font “Caviar Dreams” from a file in the same directory and creating the window in the correct area above

the system tray that uses the call-back function passed to the constructor. In my solution this call-back

function is declared later by the name handler.

Once the window has been created its window process, the aforementioned “handler” receives the size

message, consequently the rest of the windows construction is also handled in the resize member of the

plotter. Thus every time the graphing window is resized the graph is simply recreated (consequently the

vertex arrays for which are cleared beforehand even if the resize event has only been called the once). The

resize function in the plotter class receives the new size of the graphing window and accordingly attaches a

new render target to it, allowing for the drawing of OpenGl elements to the window. The grid is then setup

given the scaling, x and y offsets, the size of the window and the colour of each of the lines. This is followed

by configuring the X and Y axis and adding the queue of samples to the line plot, finally the line plot and the

grid with its axis are drawn to the screen. This approach allows the window to be seamlessly resized for

easier viewing, a feature critical to assisting the user who could potentially have issues with their vision, as

Parkinson sufferers are often elderly, who wish to see how the prediction changes over time.

Plotter message loop

The plotter message loop not only contains the resize function described earlier it also contains the add

classification message, a custom message sent to the plotter window when a classification is added to the

array, accordingly the points are re-drawn from the queue to the line plot.

Additionally, there is a destroy function, this gets called when the graphing window is closed, since it may be

re-opened I must clear plotter graphing classes and de-register the window so that it can be re-registered if

applicable later on.

In summary a main message loop handles input messages for as long as the program is running,

automatically classifying data when enough has been received. If one of the messages corresponds to the

user deciding to show their stats, a new window is created and with its corresponding message loop

operating in a separate thread, which handles the plotting of a graph displaying classifications over time.

Screenshots
I have included a couple screen shots to show the task bar menu and the graph plotter below.

Page 105 of 121

Testing
On completing my neural network and the corresponding training utilities, I tested the CPU training

performance by running two tests training a very small neural network till convergence to successfully

recognise an XOR function with 90% certainty. It would not be appropriate to test the GPU training on a

network of this size as setup overheads would outweigh the processing time. I have compared this to

training times from my friend Alex Butler (using their NEED Support Library - Alex Butler

The time in seconds is indicated in the y axis while the trial in the x axis

From the quickest (lowest) to the slowest (top) the order is as follows, Will – 400, Will – 80, java – 400, Alex

– 80, Alex – 400, java – 80.

From the graph you can see that the lines marked “Will” representing the timings for my network are far

below all others, calculating the averages gives that my network converges 84.86 times faster than the same

network constructed in visual basic and 114.84 times faster than the same network constructed in java

script.

This is due to the lower level nature of C++ and the corresponding optimisations it allows me to achieve.

The batch size of the graph represents the number of iterations before testing the network, we varied this to

investigate how conducting more tests overall on the network over time affected the training time till

convergence.

Page 106 of 121

From my testing design I hoped to conduct the following test, I have documented each and its result below:

https://www.youtube.com/playlist?list=PLoK5Ujy_qlKHaXnHcG17wrydJQ0ORhmGI

Black box tests
Mouse Client

Test ID Name Expected Outcome Testing video reference

BM1 Log creation If
Recording0.dopbf
exists will create
Recording1.dopbf…

Pass https://youtu.be/x8lBNRddIQw

BM2 Set automatic
start-up

Key created, if one
already exists do
nothing

Pass https://youtu.be/SMaruhMesL8

BM3 Configuration
file is read

Authentication
disabled if
user/pass fields
not filled, likewise
with URL

Pass https://youtu.be/PC3N0NAsGwU

BM4 System tray
icon

Icon created, menu
displayed, icon
deleted on exit

Pass https://youtu.be/R299h4h0dA4

BM5 Export logs Log.csv file is
created on export
csv logs. Read CSV,
generate graph
verify a straight
line to the right

Pass https://youtu.be/axDPQUBorWY

BM6 FTP Upload Log uploaded to
FTP server

Pass https://youtu.be/nJCWslfKqbA

BM7 Log resolution travel of known
pixels to have
greater change in
log

Pass Same video as BM5

BM8 Sample rate Time delta across
100 samples less
than 8.33 seconds

Pass https://youtu.be/Qu6KzUsMkR0

BM9 New mouse Logs from new
mouse devices

Pass https://youtu.be/2VTm1srJUW4

BM10 No mouse Doesn’t crash
when mice
disconnected

Pass https://youtu.be/2VTm1srJUW4

BM11 Binary file Binary file clearly
shows mouse logs

Pass https://youtu.be/Uov-5kn2lKw

BM12 Resources Doesn’t use more
than 500mb of ram

Pass https://youtu.be/g6zAqzVdICM

BM13 Compare FTP Files sent to FTP
server are the
same as those on
device

Pass https://youtu.be/jx85vFkIJmU

https://www.youtube.com/playlist?list=PLoK5Ujy_qlKHaXnHcG17wrydJQ0ORhmGI
https://youtu.be/x8lBNRddIQw
https://youtu.be/SMaruhMesL8
https://youtu.be/PC3N0NAsGwU
https://youtu.be/R299h4h0dA4
https://youtu.be/axDPQUBorWY
https://youtu.be/nJCWslfKqbA
https://youtu.be/Qu6KzUsMkR0
https://youtu.be/2VTm1srJUW4
https://youtu.be/2VTm1srJUW4
https://youtu.be/Uov-5kn2lKw
https://youtu.be/g6zAqzVdICM
https://youtu.be/jx85vFkIJmU

Page 107 of 121

Training

Test ID Name Expected Outcome Testing video reference

BT1 Select Log folder On start select
directory
dialogue shown

Pass https://youtu.be/oI6krKlCJQc

BT2 Exit log folder
(forcefully and
through close
method)

Dialogue closes
and program
halts

Pass https://youtu.be/3bnS4b0dM8w

BT3 Train existing - Yes Dialogue
produced if yes
is given

Pass https://youtu.be/D24Y3jckKz0

BT4 File importing
normal

No error
message is
given, training
commences

pass https://youtu.be/LbO1kmBYh3w

BT5 File importing
erroneous

Error message
if the file is
invalid

Pass https://youtu.be/0ou_v1454vg

BT6 Train existing - No Program
continues

Pass https://youtu.be/_Chmv_oa5gM

BT11 Erroneous user
input

Requested to
retry

BT7 Train existing
erroneous model
store

Requested to
retry

Pass https://youtu.be/ikkgkNXZggw

BT8 Run time Convergent
network

Pass https://youtu.be/688unzDkLsU

BT10 Log corruption Renaming logs
doesn’t crash
training

Pass https://youtu.be/QIZNYNhwiHc

BT12 Training random
network

Accuracy
improves over
time, able to
classify new
data
successfully

Pass https://youtu.be/dlnFQFGj7Sk

BT13 Accuracy test Correct
classification of
75% of classes

Pass
92.84&
accuracy

https://youtu.be/S4WzKUnfQtY

https://youtu.be/oI6krKlCJQc
https://youtu.be/3bnS4b0dM8w
https://youtu.be/D24Y3jckKz0
https://youtu.be/LbO1kmBYh3w
https://youtu.be/0ou_v1454vg
https://youtu.be/_Chmv_oa5gM
https://youtu.be/ikkgkNXZggw
https://youtu.be/688unzDkLsU
https://youtu.be/QIZNYNhwiHc
https://youtu.be/dlnFQFGj7Sk
https://youtu.be/S4WzKUnfQtY

Page 108 of 121

Live detection

Test ID Name Expected Outcome Testing video reference

BL1 Default model
imported

Model
imported
program
continues

Pass https://youtu.be/4gnwIw2zCFs

BL2 Default model
doesn’t exist

Open file
dialogue shown

Pass https://youtu.be/WgkOO6JbLCo

BL3 Set automatic start-
up

Key created, if
one already
exists do
nothing

Pass https://youtu.be/_Zi-kdKSsPo

BL4 System tray icon Icon created,
menu
displayed, icon
deleted on exit

Pass https://youtu.be/8x9rndis210

BL5 Show Stats Graph appears Pass https://youtu.be/f6gSpCDDZiQ

BL6 Resize and close Graph can be
resized and
closed

Pass https://youtu.be/ggLu6iK3XBM

BL7 Classification Graph displays
a line near 0

Pass https://youtu.be/DSB3EQVq3F0

BL8 Enable simulation Graph displays
a line near 1

BL9 Physical simulation Line grows
closer to 1 with
vibrations

BL10 At least (5-6) * 2hz
sample rate

100 samples
take at most
8.33 seconds

Pass Same test as BM8

BL11 Resource Uses less than
10% CPU
500MB RAM

Pass https://youtu.be/NLnzt0uMcbo

BL12 Paint tracking Paint tracks the
same
with/without
logging

Pass https://youtu.be/fnLcD8yNiMw

https://youtu.be/4gnwIw2zCFs
https://youtu.be/WgkOO6JbLCo
https://youtu.be/_Zi-kdKSsPo
https://youtu.be/8x9rndis210
https://youtu.be/f6gSpCDDZiQ
https://youtu.be/ggLu6iK3XBM
https://youtu.be/DSB3EQVq3F0
https://youtu.be/NLnzt0uMcbo
https://youtu.be/fnLcD8yNiMw

Page 109 of 121

White box tests
Mouse Client

Test ID Name Expected Outcome Testing video reference

WM1 Config import URL variable
stores valid
URL, as does
password and
username,
given
authentication

Pass https://youtu.be/Ei-Aadkn9Qo

WM2 Menu messages All message id’s
match their
expected ID

Pass https://youtu.be/Vuy3lprjttE

Training

Test ID Name Expected Outcome Testing video reference

WT1 Fourier transform Spike at index
5, spike at
indexes 7,90
and 450

Pass https://youtu.be/cIl2Qw9EYbU

WT2 Logs Same number
of files
detected, all
file paths are
correct

Pass https://youtu.be/jFQIb-b1Fek

WT3 Matrices multiply GPU product
same as CPU
and online

Pass https://youtu.be/-t0q1tfzj8Q

WT4 Small network train Weights
change as
expected, error
decreases

Pass https://youtu.be/u5HEzDebLs8

WT5 Fourier Transform
Iterations

N log n
iterations

Pass https://youtu.be/Bb9a-JilOpE

Live detection

Test ID Name Expected Outcome Testing video reference

WL1 Graph NN output is
expected, as
shown on
graph

Pass https://youtu.be/zFJVLs9UAj8

WL2 Parkinson’s
simulation

Normal graph
is smooth,
simulated
graph
undulates with
sharp peaks

WL3 Watch mouse
refresh rate

Equal to
roughly the
refresh rate of
the mouse in
use

Pass https://youtu.be/Sw4uYR5GSHo

https://www.razer.com/gb-
en/gaming-mice/razer-
deathadder-essential

https://youtu.be/Ei-Aadkn9Qo
https://youtu.be/Vuy3lprjttE
https://youtu.be/cIl2Qw9EYbU
https://youtu.be/jFQIb-b1Fek
https://youtu.be/-t0q1tfzj8Q
https://youtu.be/u5HEzDebLs8
https://youtu.be/Bb9a-JilOpE
https://youtu.be/zFJVLs9UAj8
https://youtu.be/Sw4uYR5GSHo
https://www.razer.com/gb-en/gaming-mice/razer-deathadder-essential
https://www.razer.com/gb-en/gaming-mice/razer-deathadder-essential
https://www.razer.com/gb-en/gaming-mice/razer-deathadder-essential

Page 110 of 121

Evaluation
Interviewer report
The purpose of the project was to train a neural network to distinguish data simulating parkinsonian type tremor and

the data set produced by healthy individuals. On reviewing the report, I was very impressed by the level of

complexity used and the accuracy of the detection achieved. The particular use of a GPU accelerated matrix library

to speed up network training exceeded the original brief and demonstrated a high level of competency, in carrying

out this A level project.

The two interactive components William showed to me for data collection and detection appeared to fulfil the brief

but I do think it could be difficult to understand the graph so would have liked another option to show a more user-

friendly looking result such as a simple percentage or a bar scale. Also I would have liked to see more techniques for

simulation since I think there should be more than the two highlighted in the investigation. I am satisfied with how

personal data is handled in the project and think it’s a worthy addition that data can be collected from any computer

with an internet connection.

As a non-specialist in this area of computer science I believe the project achieved its stated intensions and showed

an impressive 93% accuracy compared to the 75% hoped for. It should be emphasised that this is a computer science

project using simulated data sets rather than a project intended for clinical application. I cannot comment in detail

on the technical details of the training program but the results clearly meet the purpose. Overall, I think the

investigation progressed well to fully meet its goals.

Evaluation of interview
I believe the interview was very positive and that Johnathon was pleased with the progress the project has

made from its inception. I’m glad to hear he thinks it is of a high A-level standard but would like to focus on

the improvements highlighted.

I agree with the main criticism, that the simulation lacked some detail and didn’t represent the full

symptomology of Parkinson’s, I would like to, in future add a user interface to simulate a variety of aspects

of Parkinson’s through a GUI, not dissimilar to that of a volume mixer, granted further research in the

symptomology allowing the inclusion of more, more complex parkinsonian characteristics. I do believe

though, that in the solutions current state, there is already sufficient complexity especially given the time

constraint such research would have only tightened further.

I believe the comment on the graphs usability to be valid and think this is an area that should be improved

given its ease and benefit to the solution as a whole, especially given it should be useable by the widest

audience possible.

Overall, I am happy with the comments made and believe them to be valid for the investigation. Given time I

would like to add the components discussed.

Page 111 of 121

Analysis of requirements
1. A system that can decide with a certainty of at least 75% whether a person is believed to have PD or not

This is the key requirement, that the solution can correctly classify samples with at least 75% accuracy. I am

very pleased that the solution has surpassed this value being able to correctly classify samples with an

accuracy of 92.84% (As demonstrated by test BT13). I think this could be easily transferred to real life

parkinsonian data and would hope to, in future be able to collect large amounts of said data using the mouse

client and train the network further on such data. Despite my misfortune of not having any opportunity to

collect Parkinsonian data I strongly believe that such a large network accompanied with optimised training

procedures would be able to show better than 75% accuracy, as it has demonstrated a clear ability to classify

the basic symptoms from real mouse data with superposed, randomised symptoms.

2. Collect highest possible detail mouse data

a. Is capable of clearly showing tremors

i. Mouse data is collected at the maximum resolution of the mouse which is stored

The mouse client has shown itself to be highly optimised and capable of streaming mouse data at the

greatest resolution possible, without data loss or corruption, this is demonstrated by test BM7 in the testing

video BM5 in which you can see the mouse data collected is clearly greater than that windows uses natively.

Thus, through the use of raw input messages the mouse client reads data from the lowest level possible –

straight from the mouse driver, I do not believe that this could be improved in future as it is hardware

dependent, if the project were to grow, I would invest in high resolution mice for the best results.

b. Sampled at a frequency of at least 6*2Hz

i. Due to tremors occurring at 4-6Hz multiplied by 2 due to Nyquist’s theorem

The sample rate is shown to be far greater than 12Hz as the test BM8 clearly demonstrates. This test showed

that the sample rate achievable with the given mouse was far greater than 12Hz as it was in fact 980Hz,

within the margin of error of the sample rate for the given mouse listed on its specification (1000Hz), this

leaves the network with far more data to work on allowing the recognition of component frequencies up to

500Hz, well above 12Hz, consequently I believe this requirement to be fully for filled as it is capable of

sampling at far greater frequencies than required, for a more detailed look into the sample rate calculation,

see test WL3.

ii. Mouse refresh rate detected

This requirement ensures that the refresh rate has been calculated from the given mouse data, this is

required for the output of the Fourier transform to be scaled to the correct frequencies without it the crucial

recognition of 4-6Hz components would not be possible. Consequently, the trainer and live detection

members of the project must be able to calculate this frequency with a high degree of accuracy, since its

directly proportional to the interval the solution used the interval instead and was able to calculate it to be

0.835ms giving an accuracy of 81% given the mouse used sampled at 1000Hz giving a sampling interval of 1

millisecond.

Page 112 of 121

c. Recognise new mouse devices when they are connected

i. Record available mouse information

This requirement prevents the solution missing any potential mouse data or not logging any at all (in the

case of virtual mice sometimes used for RGB devices). It has been met by the solution as it automatically

logs data from all available devices when they are moved and a new message is posted. This automatic

device switching is shown in test BM9.

d. Does not crash when all input devices are disconnected

This requirement prevents the program from crashing due to a device being disconnected and then logging

halting, potentially for a long period losing a lot of potentially useful data. The solution has proven to not be

affected by the disconnection of all input devices in the test BM10.

3. Data collected is stored in a clear and known format that easy to view while taking minimal space

This has been achieved through my log to CSV option in the mouse client context menu which searches for

all mouse logs stored in the log directory and exports their contents to a CSV file in plain text, this file can be

viewed in Microsoft excel and the majority of other spreadsheeting applications. This tool is demonstrated in

test BM5.

a. Data can be exported to Excel for visualization

i. Exported data is split into three columns, mouse X,Y coordinates and time

The data has been divided accordingly in the CSV file exported into the corresponding fields with each

sample being stored as a single record, the layout is demonstrated in test BM5.

ii. All logs have headers that are easy to understand

Each log has been labelled with a plain text header denoting the source of the samples, this allows the user

easy reference to the data, should the chose to delete it. The titling can be seen in test BM5 as well.

b. Data is stored in binary for minimal file size

i. A predefined data length is established that allows for storage at maximum resolution across all

input devices

This data length has been documented in my design and technical solution, it can be seen when I inspect the

contents of a binary sample log and is a 4-byte integer for the X delta and Y delta and a 8 byte integer for the

times delta, in micro-seconds. The inspection of the binary file can be seen in test BM11

c. Data can be continually stored with a stream

The file stream to a binary file with extension “.dopbf” (detection of Parkinson’s binary file) is well

documented in my design, the implementation of this stream is demonstrated in test BM1.

i. Stream does not pause

The stream is shown in test BM1 and there are a variety of tests following being: BM9, BM10 and BM11 that

test the robustness of the sample logger

ii. Stream does not require large memory buffers >500MB

The memory buffer used in the solution to store samples until upload was kept to a minimum meaning the

entire solution to log samples required only 2MB!

4. Data is transmitted to a web server for storage

Data recorded is uploaded to an FTP server specified in the configuration file, tests for the configuration file

are BM3 and WM1, and for upload are BM6 and BM13.

a. Data being transmitted is encrypted

i. Can be quickly encrypted and decrypted efficiently without utilizing to many system resources

This is handled within the .NET frameworks FTP client which automatically applies SSL when the chosen

server supports it, adding a level of security sufficient for this project.

Page 113 of 121

b. No data is lost as it is stored

This is demonstrated in test BM13, which comparted the contents of the FTP upload and the local files, it

proved that no data was lost or corrupted from a file upload.

c. Data can be accessed at all times

This is a property of the FTP server in use as they can be concurrently accessed by a number of users and can

have access permissions set denying the general public from reading the data, allowing only authorised

admins.

d. Restarts do not cause the loss of any data, i.e. the data must be streamed to the sever

This is a property of buffered uploads as often as possible, although some data may be lost, it is minimal and

any system will have data losses in the event of unexpected halting, consequently I believe this requirement

to be met.

5. Create a model of Parkinson like mouse movement

This has been achieved by the super-position of a sign wave and “cog wheel motion” on known healthy

mouse data. The change is shown graphically in my design and is demonstrated in the testing in test WL2.

a. Model is scaled the same as mouse input

This is done through the normalisation of the mouse data to have a mean of 0 and variance 1 and is shown in

test WL2

b. Model uses a smoothed “healthy” input

Likewise, this has been achieved by normalising the data, which can be seen in test WL2

c. Has a 4-6Hz sine wave applied to it

This is achieved through the add sine wave function, documented in test WL2

d. Contains noise with sporadic peaks

Achieved with the “Add cog wheel” method documented again in test WL2

6. FFT used to Pre-process

a. Uses the Cooley Tukey recursive algorithm

The algorithm and its outputs are documented in test WL1 in which the Fourier transform algorithm

employed was ran on a number of time domain inputs and successfully decomposed them to their

constituent frequency domain interpretation.

b. Can be ran in n*log(n) time

This is clearly demonstrated in test WT5 in which the computational complexity was analysed and shown to

be clearly proportional to the function n*log(n)

7. Multi-Layer recurrent neural net training

a. Model can be trained with minimal compute power, taking a matter of days of compute time on a i7

machine

This has been achieved with the combination of a CPU and GPU library, allowing the trainer to be easily

recompiled for operation on either. The GPU library allows for the large network used to be trained in a

reasonable time frame. BT8, BT12 and WT4.

8. Multi-layer neural net to process user mouse data

The dimensions of the network are 1024 inputs to 768 to 512 to 256 to 1 output, giving the network 4

hidden layers. The dimensions of the network are displayed when they model store is imported to the

program which is demonstrated in BT4.

a. Is more than 75% accurate

The accuracy of the neural network library to classify both parkinsonian data and quickly converge to classify

XOR inputs correctly is demonstrated BT8 and WT4 respectively.

b. Displays output clearly if requested

This is achieved during training by outputting the classification for every class imported at that time every

100 iterations, this can be seen in test BT8.

The output is then shown graphically when the network is running within the live detection client,

demonstrated in test BL5 and BL7

c. Does not crash given any extreme mouse data

This is handled by the normalisation of data as shown in WL2.

Page 114 of 121

9. The entire solution can be ran on a client machine with minimal impact

This is the property of the live detection and mouse client components of the project which each utilise the

system tray to be accessible but have the least impact on the user,

a. Solution uses no more than 10% of the CPU (on an 4 threaded processor)

This is demonstrated when I measure the resource consumption of both clients, demonstrated in test BM12

and BL11 which both show a very low CPU utilisation, with the mouse client having peaks of just 5%.

b. Solution uses less than 500MB of RAM

This is demonstrated when I measure the resource consumption of both clients, demonstrated in test BM12

and BL11 which both show an extremely low memory usage with the mouse client using just 2MB and the

live detector using 75MB of ram.

c. Causes no mouse “stutters” or unresponsiveness

This has been demonstrated in test BL12, which shows the live detection program having no impact on

mouse tracking within programs.

Summary
Overall, I deem the investigation to have a positive outcome that, yes – a neural network can be used to

classify parkinsonian like symptoms with a high degree of accuracy; that could potentially be transferred to

the clinical environment, provided the mouse data was collected in a more controlled environment and that

there was an equal representation of people who were suffering from Parkinson’s as those who were not. I

am upset that I was unable to source any patients with the symptoms but feel that despite this setback the

investigation has progressed through the application of complex algorithms such as the Cooley Tukey

recursive fast Fourier transform, the GPU accelerated matrix maths library used in conjunction with a neural

network processing library to run and train a network of arbitrary size in the most efficient manner possible

given the available hardware.

These aspects have combined to form a solution that has met all requirements listed when I began and has

been able to exceed my expectations in its accuracy and stability.

Improvements
If I was to continue the investigation, I would invest time in the following subject areas:

• Implementation of an LSTM recurrent neural network to add context to the classification process,

this would require a far more complex neural network library as the processing of such a network

involves many more stages. Consequently, the training techniques used differ wildly to a feed

forward neural network so would require further research into the subject would be needed and a

deeper understanding of the calculus applied.

• Addition of further simulation techniques, the addition of further simulations would require a

deeper understanding into the symptomology of Parkinson’s but I believe this could be achieved by

consulting an expert in that field in future.

• User interface to “mix” the intensity of such simulations, this would take form using the same

graphics library used earlier in the project but would demand a far more complex user interface

model as sliders would have to be updated according to mouse user input where as the current

graphics library need only respond to resizing of the window

Page 115 of 121

Summary ... 1

Initial research .. 6

Parkinson’s .. 6

Summary ... 6

Symptoms / detection ... 6

Summary ... 7

Scope of the Problem .. 7

The issues with detecting Parkinson’s .. 7

Classification ... 7

Statistics .. 7

Gender Distribution .. 8

Age Distribution .. 8

Age Distribution in each gender ... 9

Interview with 3rd party .. 9

Interview Summary ... 10

Level 0 data flow diagram ... 11

Data Analysis ... 12

Different types of Machine learning ... 12

Supervised: .. 12

Unsupervised: ... 12

Reinforcement: ... 12

Semi-Supervised: ... 12

Conclusion: .. 12

Different types of Supervised Machine learning .. 13

Decision Trees (Classification type) .. 13

Linear regression ... 13

Least Squares .. 13

Gradient decent .. 13

Support vector machines .. 14

Maximal Margin Classifier ... 14

Soft Margin Classifier .. 14

Neural networks .. 14

Feedforward Neural Network ... 14

Radial basis function Neural Network... 14

Kohonen Self Organizing Neural Network .. 14

Recurrent Neural Network .. 14

Convolutional Neural Network ... 15

Conclusion ... 15

Page 116 of 121

Further analysis of chosen algorithm (RNN) ... 16

Computational graphs ... 16

More detail on perceptron’s ... 16

N class classification .. 17

Activation Functions.. 17

Notation .. 18

What is the Loss function? .. 18

Training through gradient decent ... 19

Backpropagation ... 19

The maths: .. 20

Error signal .. 21

How an RNN differs ... 22

Finite Impulse vs Infinite impulse ... 23

Explanation of matrix multiplication ... 23

GPU Acceleration using OpenCL ... 24

DFD for RNN: ... 25

Data collection .. 26

Mice... 26

The computer mouse .. 26

Tracking ... 26

CSV Storage ... 26

Microsoft – Win 32 C++ Mouse movement capture... 26

Reading Operation .. 27

Internet Data Transfer handling ... 28

How is Data transferred? .. 28

WAN data transfer .. 28

WinSock... 28

One Drive .. 28

AWS ... 28

Handling shutdowns ... 29

Stream ... 29

Buffered upload .. 29

Conclusion ... 29

The Fourier transforms ... 30

Solution Summary ... 32

Level 1 Data Flow Diagram .. 32

Brief description: ... 32

Modelled expected output .. Error! Bookmark not defined.

Solution requirements .. 34

Page 117 of 121

Design .. 37

Mouse Data ... 38

WinAPI Interfaces.. 38

Sample logger .. 38

CSV converter .. 38

Train Model ... 38

Sample log decoder ... 38

Fourier Transform ... 38

Neural Network Training using backpropagation ... 38

Live analysis ... 38

WinAPI ... 38

Fourier Transform ... 38

NN Model .. 38

GUI results ... 38

Mouse data Collection .. 39

Interface .. 39

Configuration .. 39

Auto-start .. 40

Pause/Start .. 40

Exit ... 40

Menu Pseudocode .. 41

Data collection .. 42

Storage structure .. 42

Data logging pseudocode .. 43

Mosue data retrieval ... 43

Mouse Data collection full flow chart ... 44

Exporting to CSV for viewing in excel.. 46

Neural Network Training ... 47

Representation .. 47

Formatting data .. 47

Normalisation .. 47

Interpolation ... 48

Fourier Transform ... 51

Simulating Parkinsons ... 53

Neural net ... 55

Determining network size ... 55

FFT Sizes .. 55

Importing the model ... 60

Network Training .. 61

Page 118 of 121

Network Initialisation .. 61

Backpropagation ... 62

Main Procedure... 65

Class diagram for network .. 66

Data dictionary up to training phase .. 67

Log retrieval .. 67

Live detection .. 68

Tests .. 71

Black box tests .. 71

Mouse Client ... 71

Training ... 73

Live detection .. 74

White box tests ... 75

Mouse Client ... 75

Training ... 75

Live detection .. 75

investigating result ... Error! Bookmark not defined.

Hardware requirements / software requirements .. Error! Bookmark not defined.

Technical solution ... 76

Overview ... 76

Training ... 80

Performance... Error! Bookmark not defined.

Data Preperation ... 80

Fourier Transform ... 80

Machine learning .. 92

Optimisation.. 96

GPU acceleration... 86

Testing .. Error! Bookmark not defined.

Black Box Testing ... Error! Bookmark not defined.

FFT .. Error! Bookmark not defined.

White Box Testing .. Error! Bookmark not defined.

Page 119 of 121

Bibliography
REPLACE SPACES WITH UNDERSCORES

Adams, W. R., November 30, 2017. High-accuracy detection of early Parkinson's

Disease using multiple characteristics of finger movement while typing. [Online]

Available at:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188226

[Accessed 14 September 2018].
Alex Graves, J. S., 2008. Offline Handwriting Recognition with Multidimensional

Recurrent Neural Networks. [Online]

Available at: https://papers.nips.cc/paper/3449-offline-handwriting-recognition-

with-multidimensional-recurrent-neural-networks
[Accessed September 2018].

Amazon, 2018. AWS Free Tier. [Online]

Available at: https://aws.amazon.com/free/?nc2=h_ql_pr

[Accessed 2 October 2018].

Asteroids, 2018. CPU performance. [Online]
Available at: https://asteroidsathome.net/boinc/cpu_list.php

[Accessed Dec 2018].

Brownlee, J., 2016. Linear Regression for Machine Learning. [Online]

Available at: https://machinelearningmastery.com/linear-regression-for-machine-

learning/

[Accessed September 2018].

Brownlee, J., 2016. Naive Bayes for Machine Learning. [Online]

Available at: https://machinelearningmastery.com/naive-bayes-for-machine-

learning/

[Accessed September 2018].

Brownlee, J., 2016. Support Vector Machines for Machine Learning. [Online]

Available at: https://machinelearningmastery.com/support-vector-machines-for-
machine-learning/

[Accessed September 2018].

Carmack, M. B. &. C., 2016. How Computer Mice Work. [Online]

Available at: https://computer.howstuffworks.com/mouse5.htm

[Accessed sep 2018].

Chamikara, M., 2014. Can someone recommend what is the best percent of divided

the training data and testing data in neural network 75:25 or 80:20 or 90:10 ?.

[Online]

Available at:

https://www.researchgate.net/post/can_someone_recommend_what_is_the_best_percent

_of_divided_the_training_data_and_testing_data_in_neural_network_7525_or_8020_or

_9010
[Accessed 3 October 2018].

Codeka, 2009. Mouse input and multiple monitors. [Online]

Available at: https://www.gamedev.net/forums/topic/528500-mouse-input-and-

multiple-monitors/

[Accessed September 2018].

Dernoncourt, F., 2016. A simple explanation of Naive Bayes Classification.
[Online]

Available at: https://stackoverflow.com/questions/10059594/a-simple-explanation-

of-naive-bayes-classification

[Accessed September 2018].

Page 120 of 121

Freeman, J., 2018. MouseTracker. [Online]

Available at: http://www.mousetracker.org/

https://en.wikipedia.org/wiki/Mouse_tracking

[Accessed Sep 2018].

Freeman, L., 2016. RNN vs CNN at a high level. [Online]

Available at: https://datascience.stackexchange.com/questions/11619/rnn-vs-cnn-

at-a-high-level

[Accessed September 2018].

Fumo, D., 2017. Types of Machine Learning Algorithms You Should Know. [Online]

Available at: https://towardsdatascience.com/types-of-machine-learning-

algorithms-you-should-know-953a08248861

[Accessed 6 September 2018].

Gandhi, R., 2018. Introduction to Machine Learning Algorithms: Linear

Regression. [Online]

Available at: https://towardsdatascience.com/introduction-to-machine-learning-
algorithms-linear-regression-14c4e325882a

[Accessed September 2018].

Gupta, P., 2017. Decision Trees in Machine Learning. [Online]

Available at: https://towardsdatascience.com/decision-trees-in-machine-learning-

641b9c4e8052

[Accessed September 2018].

Hope, C., 2017. How do computers connect to each other over the Internet?.

[Online]

Available at: https://www.computerhope.com/issues/ch001358.htm

[Accessed 31 September 2018].

Jankovic, J., March 14, 2008.. Parkinson’s disease: clinical features and

diagnosis. [Online]

Available at: https://jnnp.bmj.com/content/79/4/368

[Accessed 11 September 2018].

L.Abrahamsea, M. F. D., 2016. Sequence learning in Parkinson's disease: Focusing

on action dynamics and the role of dopaminergic medication. [Online]

Available at:

https://www.sciencedirect.com/science/article/pii/S0028393216303645
[Accessed Sep 2018].

Maladkar, K., 2018. 6 Types of Artificial Neural Networks Currently Being Used

in Machine Learning. [Online]

Available at: https://analyticsindiamag.com/6-types-of-artificial-neural-

networks-currently-being-used-in-todays-technology/

[Accessed September 2018].
Microsoft, 2018. About Raw Input. [Online]

Available at: https://docs.microsoft.com/en-us/windows/desktop/inputdev/about-

raw-input

[Accessed September 2018].

Microsoft, 2018. Downloading and uploading files on OneDrive (REST). [Online]

Available at: https://docs.microsoft.com/en-us/previous-
versions/office/developer/onedrive-live-sdk/dn659726(v=office.15)#upload_a_file

[Accessed 1 October 2018].

Microsoft, 2018. Walkthrough: Creating Windows Desktop Applications (C++).

[Online]

Available at: https://msdn.microsoft.com/en-us/library/bb384843.aspx

[Accessed 4 October 2018].
Notebaert, M. F. L. R. E. L. A. P. S. W., 2017. The effect of dopaminergic

medication on conflict adaptation in Parkinson's disease. [Online]

Page 121 of 121

Available at: https://onlinelibrary.wiley.com/doi/full/10.1111/jnp.12131

[Accessed Sep 2018].

Parkinson's UK, 2017. [Online]

Available at: https://www.parkinsons.org.uk/sites/default/files/2018-

01/Prevalence%20%20Incidence%20Report%20Latest_Public_2.pdf

[Accessed Aug 2018].

Ryen W. White, P. M. D. &. E. H., 2018. Brief Communication | OPEN | Published:

23 April 2018. [Online]

Available at: https://www.nature.com/articles/s41746-018-0016-6

[Accessed 13 September 2018].

Sanjeevi, M., 26 September 2017. Different types of Machine learning and their

types.. [Online]

Available at: https://medium.com/deep-math-machine-learning-ai/different-types-

of-machine-learning-and-their-types-34760b9128a2

[Accessed 5 September 2018].
Statista, 2018. Internet of Things (IoT) connected devices installed base

worldwide from 2015 to 2025 (in billions). [Online]

Available at: https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/

[Accessed 1 October 2018].

statista, 2019. Time spent per day with media content via computer in the United

States from 2012 to 2018, by type (in minutes). [Online]

Available at: https://www.statista.com/statistics/469995/time-spent-desktop-

laptop-media-type-usa/

[Accessed 2 Feb 2018].

Wikapedia, 2018. Convolutional Neural Network. [Online]

Available at: https://en.wikipedia.org/wiki/Convolutional_neural_network

[Accessed September 2018].

Wikapedia, 2018. FeedForward neural network. [Online]

Available at: https://en.wikipedia.org/wiki/Feedforward_neural_network

[Accessed September 2018].

Wikipedia, 2018. Computer mouse. [Online]

Available at: https://en.wikipedia.org/wiki/Computer_mouse
[Accessed Sep 2018].

Wikipedia, 2018. Cooley-Tukey FFT. [Online]

Available at: https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

[Accessed 4 October 2018].

Wikipedia, 2018. Feedforward neural network. [Online]

Available at: https://en.wikipedia.org/wiki/Feedforward_neural_network
[Accessed September 2018].

Wikipedia, 2018. Foureier transform. [Online]

Available at: https://en.wikipedia.org/wiki/Fourier_transform

[Accessed 4 October 2018].

Wikipedia, 2018. Peer to Peer. [Online]

Available at: https://en.wikipedia.org/wiki/Peer-to-peer
[Accessed 31 September 2018].

